Controlling the size of nanodomains in calcium aluminosilicate glasses

Transparent nanostructured glasses show interesting properties for optical fibers or laser beam applications. Binary calcium silicate glasses are known to undergo phase separation in silica-rich compositions. However, adding up to a few mole percent of alumina seems to inhibit the phase separation. By adjusting the amount of alumina added to demixing calcium silicate glasses, we managed to obtain transparent, but nanostructured, glasses with either silica-rich or calcium aluminosilicate-rich nanodomains of a controlled size down to 5 nm for compositions beyond the limits of the immiscibility domain. Therefore, the limits of the immiscibility domain of the SiO2–Al2O3–CaO ternary diagram must be extended to consider the presence of nanosized domains. An atomic-scale analysis of these glasses was performed using 29Si and 27Al nuclear magnetic resonance (NMR) experiments, showing that, as the size of the domains decreased, repolymerization of the silicon network and formation of aluminum-rich clusters were ob...

[1]  T. Yazawa,et al.  Spinodal-type phase separation and proton conductivity of Al2O3-doped porous glasses , 2010 .

[2]  V. Michaelis,et al.  Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study , 2010 .

[3]  Y. Yue,et al.  Evidence of Intermediate-Range Order Heterogeneity in Calcium Aluminosilicate Glasses , 2010 .

[4]  Wilfried Blanc,et al.  Erbium emission properties in nanostructured fibers. , 2009, Applied optics.

[5]  M. Deschamps,et al.  Probing chemical disorder in glasses using silicon-29 NMR spectral editing. , 2009, Physical chemistry chemical physics : PCCP.

[6]  F. Millot,et al.  The surface tension of liquid silicon at high temperature , 2008 .

[7]  A. Clare,et al.  Evaluation of phase separation in glasses with the use of atomic force microscopy , 2007 .

[8]  D. Neuville,et al.  Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR , 2007 .

[9]  D. Neuville,et al.  Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy , 2006 .

[10]  B. Glorieux,et al.  Analysis of Surface Tension from Aerodynamic Levitation of Liquids , 2004 .

[11]  D. Neuville,et al.  Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation , 2004 .

[12]  A. Pelton,et al.  Critical thermodynamic evaluation and optimization of the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 Systems , 2004 .

[13]  Pierre Hudon,et al.  The nature of phase separation in binary oxide melts and glasses. I. Silicate systems , 2002 .

[14]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[15]  L. Du,et al.  Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses , 2001 .

[16]  D. Holland,et al.  29Si T1 relaxation in alkali silicate glasses: a method for detecting glass-in-glass phase separation , 2001 .

[17]  A. Kentgens,et al.  Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems. , 2000, Journal of magnetic resonance.

[18]  T. Yazawa,et al.  Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR , 2000 .

[19]  L. Maxim,et al.  Hazard assessment and risk analysis of two new synthetic vitreous fibers. , 1999, Regulatory toxicology and pharmacology : RTP.

[20]  T. Sanders,et al.  Thermodynamic Modeling of the Miscibility Gaps and the Metastable Liquidi in the MgO‐SiO2, CaO‐SiO2, and SrO‐SiO2 Systems , 1999 .

[21]  A. Kentgens,et al.  Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei , 1999 .

[22]  J. Stebbins,et al.  NMR evidence for excess non-bridging oxygen in an aluminosilicate glass , 1997, Nature.

[23]  A. Kentgens A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems , 1997 .

[24]  M. Ernst,et al.  Cross-Polarization from Quadrupolar Nuclei to Silicon Using Low-Radio-Frequency Amplitudes during Magic-Angle Spinning , 1997 .

[25]  D. Massiot Sensitivity and Lineshape Improvements of MQ-MAS by Rotor-Synchronized Data Acquisition , 1996 .

[26]  D. Massiot,et al.  Two-dimensional magic-angle spinning isotropic reconstruction sequences for quadrupolar nuclei. , 1996, Solid state nuclear magnetic resonance.

[27]  Sen,et al.  Phase separation, clustering, and fractal characteristics in glass: A magic-angle-spinning NMR spin-lattice relaxation study. , 1994, Physical review. B, Condensed matter.

[28]  A. Kentgens,et al.  23Na NMR Spectroscopy of Solids: Interpretation of Quadrupole Interaction Parameters and Chemical Shifts , 1994 .

[29]  A. Pelton,et al.  Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 systems , 1993 .

[30]  M. E. Smith Application of27Al NMR techniques to structure determination in solids , 1993 .

[31]  P. McMillan,et al.  Al and Si coordination in SiO21bAl2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations , 1992 .

[32]  E. Behrman,et al.  Structure and properties of calcium aluminosilicate glasses , 1991 .

[33]  P. McMillan,et al.  High-Resolution 27Al and 29Si MAS NMR Investigation of SiO2-Al2O3 Glasses , 1991 .

[34]  N. Kreidl Phase separation in glasses , 1991 .

[35]  J. S. Hartman,et al.  A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses , 1990 .

[36]  M. Tomozawa,et al.  Phase separation of glasses , 1990 .

[37]  É. Lippmaa,et al.  High-resolution aluminum-27 NMR of aluminosilicates , 1986 .

[38]  G. N. Greaves,et al.  EXAFS and the structure of glass , 1985 .

[39]  É. Lippmaa,et al.  Solid-state high-resolution silicon-29 chemical shifts in silicates , 1984 .

[40]  R. Berman,et al.  A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2 , 1984 .

[41]  Paul C. Nordine,et al.  Aerodynamic levitation of laser-heated solids in gas jets , 1982 .

[42]  B. Mysen,et al.  The Structure of Silicate Melts: Implications for Chemical and Physical Properties of Natural Magma (Paper 2R0405) , 1982 .

[43]  D. Virgo,et al.  The structural role of aluminum in silicate melts—a Raman spectroscopic study at 1 atmosphere , 1981 .

[44]  É. Lippmaa,et al.  Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy , 1981 .

[45]  H. Saito,et al.  Preparation of CaO-SiO2 glasses by the gel method , 1980 .

[46]  D. Virgo,et al.  Anionic Constitution of 1-Atmosphere Silicate Melts: Implications for the Structure of Igneous Melts , 1980, Science.

[47]  G. Brown,et al.  Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions—I. Electronic structure of H6Si2O7, H6AlSiO71−, and H6Al2O72− , 1980 .

[48]  W. Vogel Phase separation in glass , 1977 .

[49]  P. F. James Liquid-phase separation in glass-forming systems , 1975 .

[50]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[51]  J. Stebbins,et al.  Characterization of Phase Separation and Thermal History Effects in Magnesium Silicate Glass Fibers by Nuclear Magnetic Resonance Spectroscopy , 2009 .

[52]  B. K. Zoitos,et al.  Isofrax, a new soluble high-temperature fiber , 1999 .

[53]  H. Oonk,et al.  A reinvestigation of liquid immiscibility in the SiO2-CaO system , 1986 .

[54]  É. Lippmaa,et al.  Structural studies of calcium aluminosilicate glasses by high resolution solid state 29Si and 27Al magic angle spinning nuclear magnetic resonance , 1985 .

[55]  W. Geßner,et al.  Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27AI NMR , 1981 .

[56]  G. A. Rankin The ternary system CaO-Al 2 O 3 -SiO 2 , with optical study by F. E. Wright , 1915 .

[57]  C. Chant Experimental investigation into the "skin" - effect in electrical oscillators , 1902 .