Atomic force microscopy based manipulation of graphene using dynamic plowing lithography

Tapping mode atomic force microscopy (AFM) is employed for dynamic plowing lithography of exfoliated graphene on silicon dioxide substrates. The shape of the graphene sheet is determined by the movement of the vibrating AFM probe. There are two possibilities for lithography depending on the applied force. At moderate forces, the AFM tip only deforms the graphene and generates local strain of the order of 0.1%. For sufficiently large forces the AFM tip can hook graphene and then pull it, thus cutting the graphene along the direction of the tip motion. Electrical characterization by AFM based electric force microscopy, Kelvin probe force microscopy and conductive AFM allows us to distinguish between the truly separated islands and those still connected to the surrounding graphene.

[1]  Martin Holland,et al.  Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices , 1994 .

[2]  A. Ferrari,et al.  Atomic force microscope nanolithography of graphene: Cuts, pseudocuts, and tip current measurements , 2011, 1102.2781.

[3]  Jeffrey Bokor,et al.  Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. , 2010, Nano letters.

[4]  Kostya S. Novoselov,et al.  Two-dimensional crystals: Beyond graphene , 2011 .

[5]  J. Rabe,et al.  Manipulation of graphene within a scanning force microscope , 2009 .

[6]  D. R. Strachan,et al.  Surface potentials and layer charge distributions in few-layer graphene films. , 2008, Nano letters.

[7]  R. Stark,et al.  Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. , 2001, Ultramicroscopy.

[8]  P. Lambin,et al.  Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. , 2008, Nature nanotechnology.

[9]  Satoru Masubuchi,et al.  Atomic force microscopy based tunable local anodic oxidation of graphene. , 2011, Nano letters.

[10]  Eungnak Han,et al.  Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. , 2010, Nano letters.

[11]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[12]  Heinz Sturm,et al.  Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope , 2001 .

[13]  B. Klehn,et al.  Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing , 1999 .

[14]  Andrew T. S. Wee,et al.  Nanoscale materials patterning and engineering by atomic force microscopy nanolithography , 2006 .

[15]  N. Peres,et al.  Optical properties of strained graphene , 2010, 1012.0127.

[16]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[17]  X. Duan,et al.  Graphene nanomesh , 2010, Nature nanotechnology.

[18]  L. Rosa,et al.  Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Qing Hua Wang,et al.  Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions , 2011, Advanced materials.

[20]  Ying Ying Wang,et al.  Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. , 2008, ACS nano.

[21]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[22]  A. Bachtold,et al.  Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy , 2009 .

[23]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[24]  M. Welland,et al.  Conducting atomic force microscopy study of silicon dioxide breakdown , 1995 .

[25]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[26]  Jon R. Pratt,et al.  Precision and accuracy of thermal calibration of atomic force microscopy cantilevers , 2006 .

[27]  J. C. Maan,et al.  Nanolithography and manipulation of graphene using an atomic force microscope , 2008 .

[28]  Ulrich Kunze,et al.  Invited Review Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope , 2002 .

[29]  J. Villarrubia Morphological estimation of tip geometry for scanned probe microscopy , 1994 .

[30]  M. I. Katsnelson,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2010 .

[31]  P. Godignon,et al.  Nanostructuring of epitaxial graphene layers on SiC by means of field-induced atomic force microscopy modification , 2009 .

[32]  Kwang S. Kim,et al.  Tuning the graphene work function by electric field effect. , 2009, Nano letters.

[33]  S. Kawata,et al.  Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. , 2006, Nano letters.

[34]  T. Fisher,et al.  Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography , 2011, Nanotechnology.

[35]  J. Bechhoefer,et al.  Erratum: ‘‘Calibration of atomic‐force microscope tips’’ [Rev. Sci. Instrum. 64, 1868 (1993)] , 1993 .

[36]  C. Stampfer,et al.  Energy gaps in etched graphene nanoribbons. , 2008, Physical review letters.

[37]  Christian Flindt,et al.  Optical properties of graphene antidot lattices , 2008, 0806.0277.

[38]  H. Sturm,et al.  Comparison between dynamic plowing lithography and nanoindentation methods , 2002 .

[39]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[40]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[41]  I. Beinik,et al.  Conductive Atomic-Force Microscopy Investigation of Nanostructures in Microelectronics , 2011 .

[42]  K. Novoselov,et al.  Scanning probe lithography on graphene , 2010 .

[43]  C. Teichert,et al.  Characterization of silicon gate oxides by conducting atomic force microscopy , 2002 .

[44]  I. Newton Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006 .

[45]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Ebersberger,et al.  Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO2 , 1998 .

[47]  K. Hirakawa,et al.  Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope , 2008, 0812.0048.

[48]  A. H. Castro Neto,et al.  Strain engineering of graphene's electronic structure. , 2009, Physical review letters.

[49]  Leonid P. Rokhinson,et al.  Atomic force microscope local oxidation nanolithography of graphene , 2008, 0807.2886.

[50]  B. Park,et al.  Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. , 2011, ACS nano.