Three-Dimensional Dynamic Random Access Memories Using Through-Silicon-Vias

This paper describes orthogonal scaling of dynamic-random-access-memories (DRAMs) using through-silicon-vias (TSVs). We review 3D DRAMs including DDR3, wide I/O mobile DRAM (WIDE I/O), and more recently, the hybrid-memory cube (HMC) and high-bandwidth memory (HBM) targeted for high-performance computing systems. We then cover embedded 3D DRAM for high-performance cache memories, reviewing an early cache prototype employing face-to-face 3D stacking which confirmed negligible performance and retention degradation using 32 nm server and ASIC embedded DRAM macros. A second cache system prototype based on POWER7 was developed to confirm feasibility of stacking μP and high density cache memory, with > 2 GHz operation. For test and assembly, a micro-electro-mechanical-system (MEMS) probe-card with an integrated active silicon chip, realized a 50 μm pitch micro-probing at-speed-active-test for known-good-die (KGD) sorting. Finally, oxide wafer bonding with Cu TSV demonstrated wafer-scale 3D integration, with TSV diameters as small as 1 μm. The paper concludes with comments on the challenges for future 3D DRAMs.

[1]  Yong Liu,et al.  A compact low-power 3D I/O in 45nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  James P. Norum,et al.  0.026µm2 high performance Embedded DRAM in 22nm technology for server and SOC applications , 2014, 2014 IEEE International Electron Devices Meeting.

[3]  Rakesh Kumar,et al.  ECC Parity: A Technique for Efficient Memory Error Resilience for Multi-Channel Memory Systems , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[4]  Paul Lindner,et al.  Advanced wafer bonding solutions for TSV integration with thin wafers , 2009, 2009 IEEE International Conference on 3D System Integration.

[5]  Young-Hyun Jun,et al.  A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM With 4 $\times$ 128 I/Os Using TSV Based Stacking , 2011, IEEE Journal of Solid-State Circuits.

[6]  Long Chen,et al.  E3CC: A memory error protection scheme with novel address mapping for subranked and low-power memories , 2013, ACM Trans. Archit. Code Optim..

[7]  C. Kothandaraman,et al.  3D stackable 32nm High-K/Metal Gate SOI embedded DRAM prototype , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[8]  R. Hannon,et al.  Wafer-scale oxide fusion bonding and wafer thinning development for 3D systems integration: Oxide fusion wafer bonding and wafer thinning development for TSV-last integration , 2012, 2012 3rd IEEE International Workshop on Low Temperature Bonding for 3D Integration.

[9]  Joel Silberman,et al.  A 3D system prototype of an eDRAM cache stacked over processor-like logic using through-silicon vias , 2012, 2012 IEEE International Solid-State Circuits Conference.

[10]  R. Gutmann,et al.  Wafer Level 3-D ICs Process Technology , 2008 .

[11]  Subramanian S. Iyer,et al.  A 14 nm 1.1 Mb Embedded DRAM Macro With 1 ns Access , 2016, IEEE Journal of Solid-State Circuits.

[12]  W. Landers,et al.  3D copper TSV integration, testing and reliability , 2011, 2011 International Electron Devices Meeting.

[13]  K. Aasmundtveit,et al.  Wafer‐Level Solid–Liquid Interdiffusion Bonding , 2012 .

[14]  Sung Kyu Lim,et al.  Design Quality Trade-Off Studies for 3-D ICs Built With Sub-Micron TSVs and Future Devices , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[15]  Toshiaki Kirihata,et al.  Three-dimensional wafer stacking using Cu TSV integrated with 45nm high performance SOI-CMOS embedded DRAM technology , 2013, 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[16]  Chuan Seng Tan,et al.  Thermocompression Cu ? Cu Bonding of Blanket and Patterned Wafers , 2012 .

[17]  Toshiaki Kirihata Three dimensional dynamic random access memory , 2014, 2014 4th IEEE International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D).

[18]  Puneet Gupta,et al.  DPCS: Dynamic Power/Capacity Scaling for SRAM Caches in the Nanoscale Era , 2015, ACM Trans. Archit. Code Optim..

[19]  T. Graves-abe,et al.  Three-Dimensional Wafer Stacking Using Cu TSV Integrated with 45 nm High Performance SOI-CMOS Embedded DRAM Technology , 2014 .

[20]  Kaushik Roy,et al.  A process-tolerant cache architecture for improved yield in nanoscale technologies , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[21]  Katsuyuki Sakuma,et al.  Bonding technologies for chip level and wafer level 3D integration , 2014, 2014 IEEE 64th Electronic Components and Technology Conference (ECTC).

[22]  Jonathan White,et al.  5.5 Steamroller: An x86-64 core implemented in 28nm bulk CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[23]  Ken Takeuchi Scaling challenges of NAND flash memory and hybrid memory system with storage class memory & NAND flash memory , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

[24]  G. Northrop,et al.  High performance 14nm SOI FinFET CMOS technology with 0.0174µm2 embedded DRAM and 15 levels of Cu metallization , 2014, 2014 IEEE International Electron Devices Meeting.

[25]  J. Safran,et al.  Through silicon via (TSV) effects on devices in close proximity - the role of mobile ion penetration - characterization and mitigation , 2014, 2014 IEEE International Electron Devices Meeting.

[26]  X. Gu,et al.  A 300-mm wafer-level three-dimensional integration scheme using tungsten through-silicon via and hybrid Cu-adhesive bonding , 2008, 2008 IEEE International Electron Devices Meeting.

[27]  Erik Nelson,et al.  A 45 nm SOI Embedded DRAM Macro for the POWER™ Processor 32 MByte On-Chip L3 Cache , 2011, IEEE Journal of Solid-State Circuits.

[28]  T. Graves-abe,et al.  Prototype of multi-stacked memory wafers using low-temperature oxide bonding and ultra-fine-dimension copper through-silicon via interconnects , 2014, 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[29]  Toshiaki Kirihata High Performance Embedded Dynamic Random Access Memory in Nano-Scale Technologies , 2010 .

[30]  Matthias Hutter,et al.  Au/Sn Solder , 2012 .

[31]  J. Jeddeloh,et al.  Hybrid memory cube new DRAM architecture increases density and performance , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[32]  Karin Strauss,et al.  Use ECP, not ECC, for hard failures in resistive memories , 2010, ISCA.

[33]  Wei Chen,et al.  5.4 Ivytown: A 22nm 15-core enterprise Xeon® processor family , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[34]  S. Yoon,et al.  2.5D/3D TSV processes development and assembly/packaging technology , 2011, 2011 IEEE 13th Electronics Packaging Technology Conference.

[35]  T. Kirihata,et al.  A 0.039um2 high performance eDRAM cell based on 32nm High-K/Metal SOI technology , 2010, 2010 International Electron Devices Meeting.

[36]  Jaejin Lee,et al.  25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[37]  John K. DeBrosse,et al.  Fault-tolerant designs for 256 Mb DRAM , 1995 .

[38]  So-Ra Kim,et al.  8Gb 3D DDR3 DRAM using through-silicon-via technology , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[39]  Wei Wu,et al.  Adaptive Cache Design to Enable Reliable Low-Voltage Operation , 2011, IEEE Transactions on Computers.

[40]  Dominique Houzet,et al.  3D multiprocessor with 3D NoC architecture based on Tezzaron technology , 2012, 2011 IEEE International 3D Systems Integration Conference (3DIC), 2011 IEEE International.

[41]  John E. Barth,et al.  Three Dimensional integration - Considerations for memory applications , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[42]  Timothy Clark Reiley,et al.  Chip-To-Package Interconnections , 1997 .

[43]  J. Thomas Pawlowski,et al.  Hybrid memory cube (HMC) , 2011, 2011 IEEE Hot Chips 23 Symposium (HCS).