Subexponential Parameterized Algorithm for Interval Completion

In the Interval Completion problem we are given an n-vertex graph G and an integer k, and the task is to transform G by making use of at most k edge additions into an interval graph. This is a fundamental graph modification problem with applications in sparse matrix multiplication and molecular biology. The question about fixed-parameter tractability of Interval Completion was asked by Kaplan et al. [FOCS 1994; SIAM J. Comput. 1999] and was answered affirmatively more than a decade later by Villanger et al. [STOC 2007; SIAM J. Comput. 2009], who presented an algorithm with running time O(k2kn3m). We give the first subexponential parameterized algorithm solving Interval Completion in time kO(√k)nO(1). This adds Interval Completion to a very small list of parameterized graph modification problems solvable in subexponential time.

[1]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[2]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[3]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[4]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[5]  Michal Pilipczuk,et al.  Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters , 2014, J. Comput. Syst. Sci..

[6]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[7]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[8]  Pinar Heggernes,et al.  Interval completion with few edges , 2007, STOC '07.

[9]  Michal Pilipczuk,et al.  Exploring the Subexponential Complexity of Completion Problems , 2015, TOCT.

[10]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[11]  Michal Pilipczuk,et al.  Tight bounds for Parameterized Complexity of Cluster Editing , 2013, STACS.

[12]  Noga Alon,et al.  Fast Fast , 2009, ICALP.

[13]  Norman E. Gibbs,et al.  A Comparison of Several Bandwidth and Profile Reduction Algorithms , 1976, TOMS.

[14]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[15]  Michal Pilipczuk,et al.  Exploring Subexponential Parameterized Complexity of Completion Problems , 2013, STACS.

[16]  Yixin Cao,et al.  An Efficient Branching Algorithm for Interval Completion , 2013, ArXiv.

[17]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[18]  Michal Pilipczuk,et al.  A Subexponential Parameterized Algorithm for Proper Interval Completion , 2014, ESA.

[19]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[20]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[21]  Fahad Panolan,et al.  Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, Algorithmica.

[22]  Pinar Heggernes,et al.  Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..

[23]  Yixin Cao,et al.  Linear Recognition of Almost (Unit) Interval Graphs , 2014, ArXiv.

[24]  Uriel Feige,et al.  Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.

[25]  Yixin Cao,et al.  Linear Recognition of Almost Interval Graphs , 2014, SODA.

[26]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[27]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[28]  Anthony Perez,et al.  Polynomial kernels for Proper Interval Completion and related problems , 2011, FCT.

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for interval completion , 2016, SODA 2016.

[31]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[32]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[33]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[34]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[35]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.