Subexponential Parameterized Algorithm for Interval Completion
暂无分享,去创建一个
Michal Pilipczuk | Fedor V. Fomin | Marcin Pilipczuk | Ivan Bliznets | F. Fomin | Marcin Pilipczuk | Michal Pilipczuk | I. Bliznets
[1] Haim Kaplan,et al. Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[2] Jörg Flum,et al. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .
[3] Klaudia Frankfurter. Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .
[4] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[5] Michal Pilipczuk,et al. Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters , 2014, J. Comput. Syst. Sci..
[6] Christian Komusiewicz,et al. Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..
[7] Jeremy P. Spinrad,et al. Modular decomposition and transitive orientation , 1999, Discret. Math..
[8] Pinar Heggernes,et al. Interval completion with few edges , 2007, STOC '07.
[9] Michal Pilipczuk,et al. Exploring the Subexponential Complexity of Completion Problems , 2015, TOCT.
[10] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[11] Michal Pilipczuk,et al. Tight bounds for Parameterized Complexity of Cluster Editing , 2013, STACS.
[12] Noga Alon,et al. Fast Fast , 2009, ICALP.
[13] Norman E. Gibbs,et al. A Comparison of Several Bandwidth and Profile Reduction Algorithms , 1976, TOMS.
[14] Haim Kaplan,et al. Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..
[15] Michal Pilipczuk,et al. Exploring Subexponential Parameterized Complexity of Completion Problems , 2013, STACS.
[16] Yixin Cao,et al. An Efficient Branching Algorithm for Interval Completion , 2013, ArXiv.
[17] Richard M. Karp,et al. Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.
[18] Michal Pilipczuk,et al. A Subexponential Parameterized Algorithm for Proper Interval Completion , 2014, ESA.
[19] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[20] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[21] Fahad Panolan,et al. Faster Parameterized Algorithms for Deletion to Split Graphs , 2012, Algorithmica.
[22] Pinar Heggernes,et al. Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..
[23] Yixin Cao,et al. Linear Recognition of Almost (Unit) Interval Graphs , 2014, ArXiv.
[24] Uriel Feige,et al. Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.
[25] Yixin Cao,et al. Linear Recognition of Almost Interval Graphs , 2014, SODA.
[26] M. Golumbic. Chapter 3 - Perfect graphs , 2004 .
[27] Haim Kaplan,et al. Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..
[28] Anthony Perez,et al. Polynomial kernels for Proper Interval Completion and related problems , 2011, FCT.
[29] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[30] Fedor V. Fomin,et al. Subexponential parameterized algorithm for interval completion , 2016, SODA 2016.
[31] Russell Impagliazzo,et al. Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[32] Erik D. Demaine,et al. Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.
[33] Fedor V. Fomin,et al. Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.
[34] Erik D. Demaine,et al. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.
[35] Jaroslav Nesetril,et al. Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.