Nonlinear Scale-Space from n-Dimensional Sieves

The one-dimensional image analysis method know as the sieve[1] is extended to any finite dimensional image. It preserves all the usual scale-space properties but has some additional features that, we believe, make it more attractive than the diffusion-based methods. We present some simple examples of how it might be used.

[1]  Alexander Toet,et al.  Graph morphology , 1992, J. Vis. Commun. Image Represent..

[2]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[3]  Moncef Gabbouj,et al.  The Quality of Edge Preservation by Non-Linear Filters , 1992 .

[4]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  J. Andrew Bangham,et al.  Multiscale recursive medians, scale-space, and transforms with applications to image processing , 1996, IEEE Trans. Image Process..

[7]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[8]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[9]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  G. Matheron Random Sets and Integral Geometry , 1976 .

[11]  J. Andrew Bangham,et al.  Scale-space from nonlinear filters , 1995, Proceedings of IEEE International Conference on Computer Vision.

[12]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[13]  Arnold W. M. Smeulders,et al.  The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Murat Kunt,et al.  Size-sensitive multiresolution decomposition of images with rank order based filters , 1992, Signal Process..