From global to local convergence of interior methods for nonlinear optimization

In this paper, we propose a modified primal–dual interior-point method for nonlinear programming that relaxes the requirement of closely following the central path and lends itself to dynamic updates of the barrier parameter. The latter promote better synchronization between the barrier parameter and the optimality residual and increase robustness. In the framework of a generic outer iteration, we show that the dynamic barrier parameter converges to zero, that the unit Newton step is asymptotically accepted and that linear or superlinear convergence occurs when the barrier parameter goes to zero linearly or superlinearly. A salient feature of our algorithm resides in the transparent transition between the global and local regimes. Where a typical implementation of an interior-point method consists in chaining a globalization algorithm with a fast locally convergent algorithm, the method that we propose remains one and the same in the global and local phases. Numerical experiments show that our method improves the standard interior-point implementation substantially by dramatically reducing the number of inner iterations per outer iteration and by controlling the barrier parameter dynamically. It also compares favourably with other recent and less recent heuristic dynamic updates.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[3]  Jorge Nocedal,et al.  Adaptive Barrier Update Strategies for Nonlinear Interior Methods , 2008, SIAM J. Optim..

[4]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[5]  Lorenz T. Biegler,et al.  Failure of global convergence for a class of interior point methods for nonlinear programming , 2000, Math. Program..

[6]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[7]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[8]  J. Gondzio,et al.  Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization , 1999 .

[9]  Jorge Nocedal,et al.  On the Local Behavior of an Interior Point Method for Nonlinear Programming , 1997 .

[10]  Nicholas I. M. Gould,et al.  On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..

[11]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[12]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[15]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[16]  J. Dussault Numerical stability and efficiency of penalty algorithms , 1995 .

[17]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[18]  J. Dussault,et al.  Stable exponential-penalty algorithm with superlinear convergence , 1994 .

[19]  A. Zients Andy , 2003 .

[20]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[21]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[22]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[23]  Nicholas I. M. Gould,et al.  Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming , 2000, SIAM J. Optim..

[24]  I M GouldNicholas,et al.  CUTEr and SifDec , 2003 .

[25]  Dominique Orban,et al.  Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming , 2008, Comput. Optim. Appl..

[26]  Paul Armand,et al.  Uniform boundedness of the inverse of a Jacobian matrix arising in regularized interior-point methods , 2013, Math. Program..

[27]  N. Gould On the convegence of a sequential penalty function method for constrained minimization , 1989 .

[28]  Robert J. Vanderbei,et al.  Interior-Point Methods for Nonconvex Nonlinear Programming: Filter Methods and Merit Functions , 2002, Comput. Optim. Appl..

[29]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[30]  Hiroshi Yamashita,et al.  Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization , 1996, Math. Program..

[31]  Paul Armand,et al.  A local convergence property of primal-dual methods for nonlinear programming , 2008, Math. Program..

[32]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[33]  Michael P. Friedlander,et al.  A primal–dual regularized interior-point method for convex quadratic programs , 2010, Mathematical Programming Computation.

[34]  Jan Vlcek,et al.  Interior point methods for large-scale nonlinear programming , 2005, Optim. Methods Softw..