Types and computations in lambda calculi and graph rewrite systems

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  Erik Barendsen An Unsolvable Numeral System in lambda Calculus , 1991, J. Funct. Program..

[3]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[4]  A. Troelstra Lectures on linear logic , 1992 .

[5]  R. E. Vesley Review: Clifford Spector, Provably Recursive Functionals of Analysis: A Consistency Proof of Analysis by an Extension of Principles Formulated in Current Intuitionistic Mathematics , 1967 .

[6]  Erik Barendsen,et al.  Conventional and Uniqueness Typing in Graph Rewrite Systems , 1993, FSTTCS.

[7]  Marko C. J. D. van Eekelen,et al.  Guaranteeing Safe Destructive Updates Through a Type System with Uniqueness Information for Graphs , 1993, Dagstuhl Seminar on Graph Transformations in Computer Science.

[8]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[9]  Hartmut Ehrig,et al.  Graph Transformations in Computer Science; International Workshop, Dagstuhl Castle, Germany, January 4-8, 1993 , 1994 .

[10]  Erik Barendsen,et al.  Extending Graph Rewriting with Copying , 1993, Dagstuhl Seminar on Graph Transformations in Computer Science.

[11]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[12]  Zena M. Ariola,et al.  Order-of-evaluation analysis for destructive updates in strict functional languages with flat aggregates , 1993, FPCA '93.

[13]  E. Barendsen,et al.  Bar recursion versus polymorphism : extended abstract , 1991 .

[14]  W. A. Howard,et al.  Functional interpretation of bar induction by bar recursion , 1968 .

[15]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[16]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[17]  E Erik Poll A programming logic based on type theory , 1994 .

[18]  Yiannis N. Moschovakis,et al.  Recursion in Higher Types , 1977 .

[19]  Journal of the Association for Computing Machinery , 1961, Nature.

[20]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[21]  Marko C. J. D. van Eekelen,et al.  Functional Programming and Parallel Graph Rewriting , 1993 .

[22]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[23]  Marko C. J. D. van Eekelen,et al.  CLEAN: A language for functional graph writing , 1987, FPCA.

[24]  Giuseppe Longo,et al.  Recursion theoretic operators and morphisms of numbered sets , 1983 .

[25]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[26]  Marc Bezem,et al.  Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.

[27]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[28]  John C. Mitchell,et al.  The Semantics of Second-Order Lambda Calculus , 1990, Inf. Comput..

[29]  E. Barendsen,et al.  Graph Rewriting and Copying , 1992 .

[30]  D. A. Turner,et al.  Miranda: A Non-Strict Functional language with Polymorphic Types , 1985, FPCA.

[31]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[32]  Gerhard Jäger,et al.  Totality in Applicative Theories , 1995, Ann. Pure Appl. Log..

[33]  Marko C. J. D. van Eekelen,et al.  Towards an Intermediate Language based on Graph Rewriting , 1987, PARLE.

[34]  Paul Hudak,et al.  Single-threaded polymorphic lambda calculus , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[35]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[36]  John C. Shepherdson,et al.  Effective operations on partial recursive functions , 1955 .

[37]  Albert R. Meyer,et al.  Polymorphism is conservative over simple types , 1990 .

[38]  S. Kleene Lambda-definable functionals of finite types , 1962 .

[39]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[40]  J. Girard,et al.  Proofs and types , 1989 .

[41]  Philip Wadler,et al.  Linear Types can Change the World! , 1990, Programming Concepts and Methods.

[42]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[43]  Horst Luckhardt The real elements in a consistency proof for simple type theory I , 1975 .

[44]  Bezem,et al.  Bar recursion versus polymorphism , 1992 .

[45]  R. Goodstein Function Theory in an Axiom-Free Equation Calculus , 1945 .

[46]  R. Smullyan To mock a mockingbird and other logic puzzles : including an amazing adventure in combinatory logic , 1985 .

[47]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[48]  Thierry Coquand,et al.  Extensional Models for Polymorphism , 1987, Theor. Comput. Sci..

[49]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[50]  Marinus J. Plasmeijer,et al.  High Level Specification of I/O in Functional Languages , 1992, Functional Programming.