Monitoring of Terrestrial Hydrology at High Latitudes with Scatterometer Data

The mission of this chapter is to provide insight into the capabilities of scatterometer data for climate change relevant monitoring at high latitudes of the terrestrial hydrosphere (excluding large ice caps). Scatterometer are active microwave instruments. Spaceborne sensors have been developed for operational ocean wind monitoring but they have also been proven of high value for applications over land area within especially the last decade (Wagner et al., 2007). The applications cover a wide range of subjects from snowmelt to phenology. What all have in common is the focus on monitoring of dynamic processes.

[1]  W. Oechel,et al.  Effects of Changes in Climate on Landscape and Regional Processes, and Feedbacks to the Climate System , 2004, Ambio.

[2]  Maurice Borgeaud,et al.  Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  U. Wegmüller The effect of freezing and thawing on the microwave signatures of bare soil. , 1990 .

[4]  Chris Derksen,et al.  Assessment of spring snow cover duration variability over northern Canada from satellite datasets , 2007 .

[5]  W. Wagner,et al.  A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data , 1999 .

[6]  Son V. Nghiem,et al.  Observations of urban and suburban environments with global satellite scatterometer data , 2009 .

[7]  G. Roe,et al.  Rain‐on‐snow events impact soil temperatures and affect ungulate survival , 2003 .

[8]  Marco Tedesco,et al.  Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations , 2007 .

[9]  Y. Kerr,et al.  Operational readiness of microwave remote sensing of soil moisture for hydrologic applications , 2007 .

[10]  David G. Long,et al.  Standard BYU QuikSCAT/SeaWinds Land/Ice Image Products , 2000 .

[11]  Wolfgang Wagner,et al.  Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data , 2007 .

[12]  Klaus Scipal,et al.  Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing , 2005 .

[13]  Mehrez Zribi,et al.  A Method for Soil Moisture Estimation in Western Africa Based on the ERS Scatterometer , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Perry J. Hardin,et al.  Investigating SeaWinds Terrestrial Backscatter: Equatorial Savannas of South America , 2003 .

[15]  Shaun Quegan,et al.  Variability in ERS scatterometer measurements over land , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Wolfgang Wagner,et al.  The development of a processing environment for time-series analysis of SeaWinds scatterometer data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[17]  F. Aires,et al.  Global inundation dynamics inferred from multiple satellite observations, 1993–2000 , 2007 .

[18]  Compton J. Tucker,et al.  Seasonality and trends of snow‐cover, vegetation index, and temperature in northern Eurasia , 2002 .

[19]  John S. Kimball,et al.  Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer , 2005 .

[20]  David G. Long,et al.  Image reconstruction and enhanced resolution imaging from irregular samples , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Sassan Saatchi,et al.  Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002 , 2004 .

[22]  Volkmar Wismann,et al.  Monitoring of seasonal thawing in Siberia with ERS scatterometer data , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  Klaus Scipal,et al.  Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system , 2008 .

[24]  Jai Singh Parihar,et al.  Evaluation of Ku‐band QuikSCAT scatterometer data for rice crop growth stage assessment , 2007 .

[25]  Wolfgang Wagner,et al.  RIVER FLOW & WETLAND MONITORING WITH ENVISAT ASAR GLOBAL MODE IN THE OKAVANGO BASIN AND DELTA , 2008 .

[26]  Douglas L. Kane,et al.  The Impact of Hydrologic Perturbations on Arctic Ecosystems Induced by Climate Change , 1997 .

[27]  E. S. Melnikov,et al.  Circum-Arctic map of permafrost and ground-ice conditions , 1997 .

[28]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[29]  Karl Rupp,et al.  Application of C and Ku-Band scatterometer data for catchment hydrology in northern latitudes , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Son V. Nghiem,et al.  Global snow cover monitoring with spaceborne Ku-band scatterometer , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  J. F. Nixon,et al.  The frozen earth: Fundamentals of geocryology , 1990 .

[32]  Hans Bonekamp,et al.  An Introduction to the EUMETSAT Polar system , 2007 .

[33]  Chris Derksen,et al.  Detection of pan-Arctic terrestrial snowmelt from QuikSCAT, 2000–2005 , 2008 .

[34]  Maurice Borgeaud,et al.  A study of vegetation cover effects on ERS scatterometer data , 1999, IEEE Trans. Geosci. Remote. Sens..

[35]  L. Holko,et al.  Snow Cover Characteristics over the Main Russian River Basins as Represented by Reanalyses and Measured Data , 2008 .

[36]  Wolfgang Wagner,et al.  ASCAT Soil Moisture: An Assessment of the Data Quality and Consistency with the ERS Scatterometer Heritage , 2009 .

[37]  Eric Rignot,et al.  Winter and Spring Thaw as Observed with Imaging Radar at BOREAS , 1997 .

[38]  F. Chapin,et al.  Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions , 2004 .

[39]  Hugh M. French,et al.  The Periglacial Environment , 1977 .

[40]  W. Wagner,et al.  Initial soil moisture retrievals from the METOP‐A Advanced Scatterometer (ASCAT) , 2007 .

[41]  Daqing Yang,et al.  Streamflow response to seasonal snow cover mass changes over large Siberian watersheds , 2007 .

[42]  Klaus Scipal,et al.  Azimuthal anisotropy of scatterometer measurements over land , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Klaus Scipal,et al.  Detection of permanent open water surfaces in central Siberia with ENVISAT ASAR wide swath data with special emphasis on the estimation of methane fluxes from tundra wetlands , 2008 .

[44]  C. Tucker,et al.  Increased plant growth in the northern high latitudes from 1981 to 1991 , 1997, Nature.

[45]  John S. Kimball,et al.  Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. , 2004 .

[46]  D. Kane,et al.  An Extreme Rainfall/Runoff Event in Arctic Alaska , 2003 .

[47]  John S. Kimball,et al.  Using the space‐borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons , 1999 .

[48]  Filipe Aires,et al.  Remote sensing of global wetland dynamics with multiple satellite data sets , 2001 .

[49]  S. Frolking,et al.  Radar remote sensing of the spring thaw transition across a boreal landscape , 2004 .

[50]  John S. Kimball,et al.  Application of the NASA Scatterometer (NSCAT) for Determining the Daily Frozen and Nonfrozen Landscape of Alaska , 2001 .

[51]  Wolfgang Wagner,et al.  Using ENVISAT ASAR Global Mode Data for Surface Soil Moisture Retrieval Over Oklahoma, USA , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[52]  John S. Kimball,et al.  Interannual variability in North American grassland biomass/productivity detected by SeaWinds scatterometer backscatter , 2005 .

[53]  Claude R. Duguay,et al.  Remote Sensing of Snow Cover , 2013 .