Reliable control of uncertain delayed systems with integral quadratic constraints

The reliable control design problem for uncertain systems with time delays as well as actuator failures in the input channels is discussed. A sufficient condition is established such that the closed-loop system stability and a time-domain integral quadratic constraint are satisfied for both a normal system and a system with possible actuator failures. A reliable state feedback controller is synthesised within the framework of linear matrix inequalities. Simulation results on a test example are presented to validate the proposed design method.

[1]  Dragoslav D. Šiljak,et al.  Reliable control using multiple control systems , 1980 .

[2]  A. G. J. MacFarlane,et al.  Complex Variable Methods for Linear Multivariable Feedback Systems , 1980 .

[3]  M. Vidyasagar,et al.  Algebraic design techniques for reliable stabilization , 1982 .

[4]  Etsujiro Shimemura,et al.  Integrity against arbitrary feedback-loop failure in linear multivariable control systems , 1988, Autom..

[5]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[6]  Faryar Jabbari,et al.  A noniterative method for the design of linear robust controllers , 1990 .

[7]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[8]  R. Srichander,et al.  Stochastic stability analysis for continuous-time fault tolerant control systems , 1993 .

[9]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[10]  Robert J. Veillette,et al.  Reliable linear-quadratic state-feedback control , 1995, Autom..

[11]  K. Watanabe,et al.  Recent advances in control of time delay systems-a tutorial review , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[12]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[13]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[14]  J. Jiang,et al.  Reliable State Feedback Control System Design Against Actuator Failures , 1998, Autom..

[15]  José Claudio Geromel,et al.  H2-norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control , 1999, IEEE Trans. Autom. Control..

[16]  S. Ding,et al.  An LMI approach to the design of fault detection filter for time-delay LTI systems with unknown inputs , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[17]  Jianliang Wang,et al.  Reliable Hinfinity controller design for linear systems , 2001, Autom..

[18]  Raffaello D'Andrea,et al.  Convex and finite-dimensional conditions for controller synthesis with dynamic integral constraints , 2001, IEEE Trans. Autom. Control..

[19]  Qiong Wu,et al.  Decentralized robust controller design for uncertain large-scale systems with control delays , 2001 .

[20]  R. Mehra,et al.  Multiple-Model Adaptive Flight Control Scheme for Accommodation of Actuator Failures , 2002 .

[21]  Shengyuan Xu,et al.  An LMI approach to guaranteed cost control for uncertain linear neutral delay systems , 2003 .

[22]  H. Su,et al.  Delay-dependent robust H/sub /spl infin// control for uncertain time-delay systems , 2003 .

[23]  C.-S. Hsieh Reliable control design using a two-stage linear quadratic reliable control , 2003 .