Finding Interpolating Curves Minimizing LINFINITY Acceleration in the Euclidean Space via Optimal Control Theory

We study the problem of finding an interpolating curve passing through prescribed points in the Euclidean space. The interpolating curve minimizes the pointwise maximum length, i.e., $L^\infty$-norm, of its acceleration. We reformulate the problem as an optimal control problem and employ simple but effective tools of optimal control theory. We characterize solutions associated with singular and nonsingular controls. Some of the results we obtain are new even for the scalar interpolating function case. We reduce the infinite-dimensional interpolation problem to an ensuing finite-dimensional one and derive closed form expressions for interpolating curves. Consequently we devise efficient numerical techniques and illustrate them with examples.

[1]  Lyle Noakes,et al.  Non-null Lie quadratics in E3 , 2004 .

[2]  THE EXISTENCE , CHARACTERIZATION AND ESSENTIAL UNIQUENESS OF SOLUTIONS OF L ° ° EXTREMAL PROBLEMSÍ 1 ) BY , 2010 .

[3]  C. Yalçin Kaya,et al.  Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems , 2013, J. Optim. Theory Appl..

[4]  Ilya V. Kolmanovsky,et al.  Best interpolation in a strip II: Reduction to unconstrained convex optimization , 1996, Comput. Optim. Appl..

[5]  Lyle Noakes,et al.  Geometry for robot path planning , 2007, Robotica.

[6]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[7]  Asen L. Dontchev,et al.  Best interpolation in a strip , 1993 .

[8]  R. C. Rodrigues,et al.  A two-step algorithm of smooth spline generation on Riemannian manifolds , 2006 .

[9]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[10]  D. McClure Perfect spline solutions of L∞ extremal problems by control methods , 1975 .

[11]  C. Micchelli,et al.  Curves from variational principles , 1992 .

[12]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[13]  C. Yalçin Kaya,et al.  Inexact Restoration for Runge-Kutta Discretization of Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[14]  Knut Hüper,et al.  Geometric Splines and Interpolation on S2: Numerical Experiments , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[15]  K. Malanowski,et al.  Error bounds for euler approximation of a state and control constrained optimal control problem , 2000 .

[16]  Carl de Boor,et al.  On “best” interpolation☆ , 1976 .

[17]  Parabolic curves in Lie groups , 2010 .

[18]  Charles A. Micchelli,et al.  ConstrainedLp approximation , 1985 .

[19]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[20]  V. K. Isaev,et al.  To the theory of optimal splines , 2010, Appl. Math. Comput..

[21]  Samuel Karlin,et al.  Interpolation properties of generalized perfect splines and the solutions of certain extremal problems. I , 1975 .

[22]  H. Maurer,et al.  Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems , 2000 .

[23]  S. Meyn,et al.  THE EXISTENCE OF AN “I” , 2020, The Nature of Order, Book 4: The Luminous Ground.

[24]  Lyle Noakes,et al.  Asymptotics of Null Lie Quadratics in E3 , 2008, SIAM J. Appl. Dyn. Syst..

[25]  Gerhard Opfer,et al.  On the Construction of Optimal Monotone Cubic Spline Interpolations , 1999 .

[26]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[27]  Clyde F. Martin,et al.  Optimal control of dynamic systems: Application to spline approximations , 1998, Appl. Math. Comput..

[28]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[29]  J. Favard,et al.  Sur l'interpolation , 1939 .

[30]  Knut Hüper,et al.  Smooth interpolation of orientation by rolling and wrapping for robot motion planning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[31]  Liqun Qi,et al.  A Newton Method for Shape-Preserving Spline Interpolation , 2002, SIAM J. Optim..

[32]  F. Clarke,et al.  Applications of optimal multiprocesses , 1989 .

[33]  F. Silva Leite,et al.  Geometry and the Dynamic Interpolation Problem , 1991, 1991 American Control Conference.

[34]  J. M. Martínez,et al.  Euler Discretization and Inexact Restoration for Optimal Control , 2007 .

[35]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[36]  G. Aronsson Perfect splines and nonlinear optimal control theory , 1979 .

[37]  L. Noakes Null cubics and Lie quadratics , 2003 .