Geometric transformations embedded into convolutional neural networks

[1]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[2]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[3]  Vincent Gripon,et al.  Generalizing the Convolution Operator to Extend CNNs to Irregular Domains , 2016, ArXiv.

[4]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Neural Networks , 2013 .

[5]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[6]  Sebastian Bassi,et al.  Python Language Reference , 2009 .

[7]  Joachim M. Buhmann,et al.  TI-POOLING: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[9]  Junwei Han,et al.  Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Michele Volpi,et al.  Learning rotation invariant convolutional filters for texture classification , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[11]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.