The role of center vortices in Gribov's confinement scenario

The connection of Gribov's confinement scenario in the Coulomb gauge with the center vortex picture of confinement is investigated. For this purpose we assume a vacuum wave functional that models the infrared properties of the theory and, in particular, shows strict confinement, i.e. an area law of the Wilson loop. We isolate the center vortex content of this wave functional by standard lattice methods and investigate their contributions to various static propagators of the Hamilton approach to Yang-Mills theory in the Coulomb gauge. We find that the infrared properties of these quantities, in particular, the infrared divergence of the ghost form factor, are dominated by center vortices.

[1]  G. Burgio,et al.  BRST symmetry versus horizon condition in Yang-Mills theories , 2009, 0911.5101.

[2]  I. Bogolubsky,et al.  The Landau gauge gluon propagator in 4D SU(2) lattice gauge theory revisited: Gribov copies and scaling properties , 2009, 0912.2249.

[3]  H. Reinhardt,et al.  Wilson loop from a Dyson equation , 2009, 0910.2916.

[4]  H. Reinhardt,et al.  Hamiltonian approach to 1 + 1 dimensional Yang–Mills theory in Coulomb gauge , 2008, 0809.1764.

[5]  Jan M. Pawlowski,et al.  On the infrared behavior of Landau gauge Yang-Mills theory , 2008, 0810.1987.

[6]  H. Reinhardt Dielectric function of the QCD vacuum. , 2008, Physical review letters.

[7]  A. Szczepaniak,et al.  Subcritical solution of the Yang-Mills Schroedinger equation in the Coulomb gauge , 2007, 0712.3694.

[8]  A. Cucchieri,et al.  Constraints on the infrared behavior of the gluon propagator in Yang-Mills theories. , 2007, Physical review letters.

[9]  H. Reinhardt,et al.  Yang-Mills vacuum in Coulomb gauge in D = 2 + 1 dimensions , 2007, 0711.2452.

[10]  G. Burgio,et al.  Improved Landau gauge fixing and the suppression of finite-volume effects of the lattice gluon propagator , 2007, 0707.3611.

[11]  J. Greensite,et al.  Dimensional Reduction and the Yang-Mills Vacuum State in 2+1 Dimensions , 2007, 0707.2860.

[12]  A. Voigt,et al.  Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice , 2007, 0709.4585.

[13]  H. Reinhardt,et al.  The 't Hooft loop in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge , 2007, 0706.0175.

[14]  Jan M. Pawlowski,et al.  Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory , 2006, 0903.2193.

[15]  G. Burgio,et al.  Landau gauge ghost and gluon propagators in SU(2) lattice gauge theory: Gribov ambiguity reexamined , 2005, hep-lat/0511056.

[16]  K. Langfeld,et al.  Propagators in Coulomb gauge from SU(2) lattice gauge theory , 2004, hep-lat/0406024.

[17]  H. Reinhardt,et al.  Quark and gluon confinement in Coulomb gauge , 2004, hep-th/0402106.

[18]  J. Greensite,et al.  Coulomb Energy, Vortices, and Confinement , 2003, hep-lat/0302018.

[19]  D. Zwanziger No confinement without Coulomb confinement. , 2002, Physical review letters.