Energy efficient operation and modeling for greenhouses: A literature review

Abstract With growing food demand worldwide, controlled environment agriculture is an important strategy for crop production year-round. One of the important types of controlled environment agriculture is greenhouses. Key indoor environmental parameters such as carbon dioxide, moisture, lighting, and temperature are required to be maintained for favorable crop growth in greenhouses. Due to lightweight construction and inefficient operation, greenhouses consume more fossil fuel energy in the operation of mechanical systems than other similar sized buildings and have larger carbon footprints. In fact, greenhouses are one of the most energy-intensive sectors of the agricultural industry. Energy consumption in greenhouses is influenced by mechanical systems, indoor environment, crop growth, and evapotranspiration. Therefore, energy simulations help analyze the complex thermal processes in greenhouse operation, and contribute to energy efficient greenhouse operation. This paper reviews existing strategies on energy efficient control operation and state-of-the-art energy simulation for greenhouses. It first discusses strategies for improving energy efficiency in greenhouse control operation by summarizing the studies on energy efficient operation strategies, the control of key greenhouse parameters, sensing network and monitoring systems, along with various control algorithms. Second, the review covers energy modeling of greenhouses by summarizing existing and developed approaches. Finally, this review identifies areas in which future research has the potential to reduce greenhouse energy consumption and carbon footprint.

[1]  David N. Ford,et al.  System Dynamics Applied to Project Management: A Survey, Assessment, and Directions for Future Research , 2007, System Dynamics.

[2]  J. D. Stigter,et al.  Optimal control of a solar greenhouse , 2003, 2003 European Control Conference (ECC).

[3]  Paulo Salgado,et al.  Greenhouse climate hierarchical fuzzy modelling , 2005 .

[4]  Chen Yonghui,et al.  Applications of DMC-PID algorithm in the measurement and control system for the greenhouse environmental factors , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[5]  Fei Liu,et al.  Robust adaptive control for greenhouse climate using neural networks , 2011 .

[6]  Goran Martinović,et al.  Greenhouse microclimatic environment controlled by a mobile measuring station , 2014 .

[7]  Seyed Hossein Sadati,et al.  Control Techniques in Heating, Ventilating and Air Conditioning (HVAC) Systems , 2008 .

[8]  Xiaohui Zhou,et al.  Adaptive learning based data-driven models for predicting hourly building energy use , 2018 .

[9]  H. Janssen,et al.  A Prototype Sensor for Estimating Light Interception by Plants in a Greenhouse , 2008 .

[10]  Khalid M. Saqr,et al.  Optimum operational performance of a new stand-alone agricultural greenhouse with integrated-TPV solar panels , 2016 .

[11]  Chengwei Ma,et al.  Modeling greenhouse air humidity by means of artificial neural network and principal component analysis , 2010 .

[12]  Alfonso Baños,et al.  ROBUST CONTROL OF GREENHOUSE CLIMATE EXPLOITING MEASURABLE DISTURBANCES , 2002 .

[13]  Mikhail Chester,et al.  Attributional and Consequential Life-cycle Assessment in Biofuels: a Review of Recent Literature in the Context of System Boundaries , 2015, Current Sustainable/Renewable Energy Reports.

[14]  Abdul Rahman Ramli,et al.  Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps , 2018 .

[15]  Phillip Frank Gower Banfill,et al.  Understanding and improving household energy consumption and carbon emissions policies ? a system dynamics approach , 2012 .

[16]  H. F. de Zwart,et al.  Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency , 2015 .

[17]  Alejandro Castaeda-Miranda,et al.  Smart frost control in greenhouses by neural networks models , 2017 .

[18]  J. D. Stigter,et al.  Towards an adaptive model for greenhouse control , 2009 .

[19]  S. Revathi,et al.  Fuzzy Based Temperature Control of Greenhouse , 2016 .

[20]  Yeung Yam,et al.  Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[21]  Stefanie Hellweg,et al.  A novel integrated framework to evaluate greenhouse energy demand and crop yield production , 2018, Renewable and Sustainable Energy Reviews.

[22]  L. Albright,et al.  Comparison of energy consumption: greenhouses and plant factories , 2016 .

[23]  K. Ito,et al.  Greenhouse temperature control with wooden pellet heater via model predictive control approach , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[24]  Xin-ping Chen,et al.  Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment , 2018, Agricultural Systems.

[25]  David W. Archer,et al.  Exploring agricultural production systems and their fundamental components with system dynamics modelling , 2016 .

[26]  Edgar G. Hertwich,et al.  Understanding the Climate Mitigation Benefits of Product Systems: Comment on “Using Attributional Life Cycle Assessment to Estimate Climate‐Change Mitigation…” , 2014 .

[27]  H.-J. Tantau,et al.  REAL TIME NON LINEAR CONSTRAINED MODEL PREDICTIVE CONTROL OF A GREENHOUSE , 2002 .

[28]  Mouna Boughamsa,et al.  Multiscale fuzzy model-based short term predictive control of greenhouse microclimate , 2015, 2015 IEEE 13th International Conference on Industrial Informatics (INDIN).

[29]  Avraham Arbel,et al.  Robust Control of Greenhouse Temperature and Humidity , 2009 .

[30]  Ammar A. Farhan,et al.  A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse , 2015 .

[31]  Jorge Antonio Sánchez-Molina,et al.  A hybrid-controlled approach for maintaining nocturnal greenhouse temperature: Simulation study , 2016, Comput. Electron. Agric..

[32]  V. M. Salokhe,et al.  Modelling of tropical greenhouse temperature by auto regressive and neural network models , 2008 .

[33]  I. L. López-Cruz,et al.  Neuro-Fuzzy models for air temperature and humidity of a greenhouse , 2012 .

[34]  Noman Islam,et al.  A review of wireless sensors and networks' applications in agriculture , 2014, Comput. Stand. Interfaces.

[35]  E. J. van Henten,et al.  Optimal greenhouse cultivation control: survey and perspectives , 2010 .

[36]  C. G. Sorensen,et al.  A more energy efficient controller for the greenhouses climate control system. , 2010 .

[37]  Gerrit van Straten,et al.  Optimal Control of Greenhouse Cultivation , 2010 .

[38]  António E. Ruano,et al.  A greenhouse climate multivariable predictive controller. , 2000 .

[39]  Eduardo F. Camacho,et al.  Constrained predictive control of a greenhouse , 2005 .

[40]  M Nachidi,et al.  Takagi-Sugeno control of nocturnal temperature in greenhouses using air heating. , 2011, ISA transactions.

[41]  Robert Babuska,et al.  Fuzzy control , 2008, Scholarpedia.

[42]  Guanghui Li,et al.  Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network , 2012, Sensors.

[43]  Gheorghe-Daniel Andreescu,et al.  Greenhouse Climate Control Enhancement by Using Genetic Algorithms , 2014 .

[44]  He Yaofeng,et al.  Greenhouse modelling and control based on T-S model , 2018 .

[45]  Z. T. Xu,et al.  Greenhouse air temperature predictive control using the dynamic matrix control , 2013, 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP).

[46]  Konstantinos G. Arvanitis,et al.  AN INTELLIGENT NONINTERACTING TECHNIQUE FOR CLIMATE CONTROL OF GREENHOUSES , 2002 .

[47]  Erik D. Goodman,et al.  NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances , 2012, Neural Computing and Applications.

[48]  Joan Rieradevall,et al.  An environmental and economic life cycle assessment of rooftop greenhouse (RTG) implementation in Barcelona, Spain. Assessing new forms of urban agriculture from the greenhouse structure to the final product level , 2015, The International Journal of Life Cycle Assessment.

[49]  Fang Xu,et al.  Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms , 2015 .

[50]  Michael B. Timmons,et al.  Thermal modeling of greenhouse aquaculture raceway systems , 2009 .

[51]  António E. Ruano,et al.  Discrete Model-Based Greenhouse Environmental Control using the Branch & Bound Algorithm , 2008 .

[52]  Andreas K. Athienitis,et al.  Experimental Evaluation and Energy Modeling of a Greenhouse Concept with Semi-transparent Photovoltaics , 2015 .

[53]  Ibrahim A. Hameed,et al.  A GA-Based Adaptive Neuro-Fuzzy Controller for Greenhouse Climate Control System , 2015, Alexandria Engineering Journal.

[54]  Rupp Carriveau,et al.  A techno-economic analysis of seasonal thermal energy storage for greenhouse applications , 2017 .

[55]  H. Challa,et al.  Design for an improved temperature integration concept in greenhouse cultivation. , 2003 .

[56]  Zheng Shen,et al.  A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model , 2015 .

[57]  Ken R. McNaught,et al.  Design classes for hybrid simulations involving agent-based and system dynamics models , 2012, Simul. Model. Pract. Theory.

[58]  Fathi Fourati,et al.  A greenhouse control with feed-forward and recurrent neural networks , 2007, Simul. Model. Pract. Theory.

[59]  N. Gilbert One-third of our greenhouse gas emissions come from agriculture , 2012, Nature.

[60]  Doaa M. Atia,et al.  Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system , 2017 .

[61]  Xavier Blasco Ferragud,et al.  Model Based Predictive Control Using Genetic Algorithms. Application to Greenhouses Climate Control , 2001, IWANN.

[62]  Abbas Rohani,et al.  Solar thermal simulation and applications in greenhouse , 2017 .

[63]  J. L. Guzmán,et al.  GREENHOUSE DIURNAL TEMPERATURE CONTROL WITH NATURAL VENTILATION BASED ON EMPIRICAL MODELS , 2006 .

[64]  José Boaventura-Cunha,et al.  A feasibility study of sliding mode predictive control for greenhouses , 2016 .

[65]  Juneseuk Shin,et al.  Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case , 2014 .

[66]  Antonio Messineo,et al.  An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse , 2017 .

[67]  Hill Jamison Dynamic Modeling Of Tree Growth And Energy Use In A Nursery Greenhouse Using Matlab And Simulink , 2006 .

[68]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[69]  Isaac Dyner,et al.  System Dynamics Modelling for Residential Energy Efficiency Analysis and Management , 1995 .

[70]  Lihong Xu,et al.  Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms , 2011, Sensors.

[71]  J. Balmat Fuzzy Logic to the Identification and the Command of the Multidimensional Systems (invited Paper) , 2003 .

[72]  Konstantinos G. Arvanitis,et al.  Multirate adaptive temperature control of greenhouses , 2000 .

[73]  N. Bennis,et al.  Greenhouse climate modelling and robust control , 2008 .

[74]  de H.F. Zwart,et al.  Analyzing energy-saving options in greenhouse cultivation using a simulation model , 1996 .

[75]  Lin Feng,et al.  Tuning the PID parameters for greenhouse control based on CFD simulation , 2013, 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics).

[76]  Paulo Pinho,et al.  Dynamic control of supplemental lighting intensity in a greenhouse environment , 2013 .

[77]  Aissa Belmeguenai,et al.  Adaptive Neuro-Fuzzy Inference Systems for Modeling Greenhouse Climate , 2016 .

[78]  Ertan Onur,et al.  WIRELESS SENSOR NETWORKS FOR SECURITY: ISSUES AND CHALLENGES , 2006 .

[79]  Daoliang Li,et al.  Model predictive control and its application in agriculture: A review , 2018, Comput. Electron. Agric..

[80]  E. J. van Henten,et al.  Minimal heating and cooling in a modern rose greenhouse , 2015 .

[81]  Jean-François Balmat,et al.  Optimized fuzzy control of a greenhouse , 2002, Fuzzy Sets Syst..

[82]  M. Srbinovska,et al.  Environmental parameters monitoring in precision agriculture using wireless sensor networks , 2015 .

[83]  Hartmut Pohlheim,et al.  Optimal control of greenhouse climate using real-world weather data and evolutionary algorithms , 1999 .

[84]  Abbas Rohani,et al.  Applied machine learning in greenhouse simulation; new application and analysis , 2018, Information Processing in Agriculture.

[85]  E. Pressman,et al.  Exposing pepper plants to high day temperatures prevents the adverse low night temperature symptoms , 2006 .

[86]  Belkacem Draoui,et al.  Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms , 2011 .

[87]  Jorge Antonio Sánchez-Molina,et al.  Bayesian networks for greenhouse temperature control , 2016, J. Appl. Log..

[88]  Xing Shi,et al.  Ineffectiveness of optimization algorithms in building energy optimization and possible causes , 2019 .

[89]  H. Challa,et al.  Process-based humidity control regime for greenhouse crops , 2003 .

[90]  L. V. Willigenburg,et al.  The significance of crop co-states for receding horizon optimal control of greenhouse climate , 2002 .

[91]  H. Challa,et al.  Temperature integration and process-based humidity control in chrysanthemum , 2004 .

[92]  N. J. van de Braak,et al.  THE ENERGY BALANCE AND ENERGY-SAVING MEASURES IN GREENHOUSE TOMATO CULTIVATION , 2005 .

[93]  D. Kolokotsa,et al.  Development of an intelligent indoor environment and energy management system for greenhouses using a fuzzy logic controller and LonWorks® pro- tocol , 2006 .

[94]  Brynhildur Davidsdottir,et al.  Energy performance of dwelling stock in Iceland: System dynamics approach , 2017 .

[95]  Jlm Jan Hensen,et al.  Energy saving potential of long-term climate adaptive greenhouse shells , 2013 .

[96]  Daeyoung Kim,et al.  A2S: Automated Agriculture System based on WSN , 2007, 2007 IEEE International Symposium on Consumer Electronics.

[97]  E. V. Henten,et al.  The effect of sensor errors on production and energy consumption in greenhouse horticulture , 2011 .

[98]  Ruzhu Wang,et al.  Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates , 2015 .

[99]  Edgar Alfredo Portilla-Flores,et al.  Evaluation of thermal behavior for an asymmetric greenhouse by means of dynamic simulations , 2014 .

[100]  G. Aiello,et al.  A decision support system based on multisensor data fusion for sustainable greenhouse management , 2018 .

[101]  Francisco Rodríguez,et al.  Robust constrained economic receding horizon control applied to the two time‐scale dynamics problem of a greenhouse , 2014 .

[102]  C. Stanghellini,et al.  A methodology for model-based greenhouse design: Part 3, sensitivity analysis of a combined greenhouse climate-crop yield model , 2011 .

[103]  Mahmoud Omid,et al.  Evaluation of Intelligent Greenhouse Climate Control System, Based Fuzzy Logic in Relation to Conventional Systems , 2009, 2009 International Conference on Artificial Intelligence and Computational Intelligence.

[104]  Per-Olof Gutman,et al.  Robust controllers for simultaneous control of temperature and CO2 concentration in greenhouses , 1999 .

[105]  Omer Tatari,et al.  Towards greening the U.S. residential building stock: A system dynamics approach , 2014 .

[106]  E. V. Henten,et al.  Performance of extended and unscented Kalman filters for state and parameter estimation of a greenhouse climate model , 2017 .

[107]  Francisco Rodríguez,et al.  Adaptive hierarchical control of greenhouse crop production , 2008 .

[108]  J. Ríos-Moreno,et al.  Greenhouse energy consumption prediction using neural networks models , 2009 .

[109]  Francisco Rodríguez,et al.  Multiobjective hierarchical control architecture for greenhouse crop growth , 2012, Autom..

[110]  Yuan Feng,et al.  A Kind of Temperature and Humidity Adaptive Predictive Decoupling Method in Wireless Greenhouse Environmental Test Simulation System , 2013 .

[111]  Frauke Oldewurtel,et al.  Experimental analysis of model predictive control for an energy efficient building heating system , 2011 .

[112]  Francisco Rodríguez,et al.  Diurnal greenhouse temperature control with predictive control and online constrains mapping , 2010 .

[113]  Mark E. Borsuk,et al.  Methods for translating narrative scenarios into quantitative assessments of land use change , 2016, Environ. Model. Softw..

[114]  Simon Shepherd,et al.  A review of system dynamics models applied in transportation , 2014 .

[115]  S. D. Dhamakale,et al.  Fuzzy Logic Approach with Microcontroller for Climate Controlling in Green House , 2011 .

[116]  Belkacem Draoui,et al.  EVOLUTIONARY ALGORITHMS IN THE OPTIMIZATION OF NATURAL VENTILATION PARAMETERS IN A GREENHOUSE WITH CONTINUOUS ROOF VENTS , 2006 .

[117]  Francisco Rodríguez,et al.  Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes , 2017 .

[118]  Ep Heuvelink,et al.  Daily Temperature Integration: a Simulation Study to quantify Energy Consumption , 2004 .

[119]  Laurent Gauthier,et al.  Energy consumption due to dehumidification of greenhouses under northern latitudes , 1998 .

[120]  Konstantinos G. Arvanitis,et al.  A nonlinear feedback technique for greenhouse environmental control , 2003 .

[121]  Wei Wang,et al.  Neuron adaptive PID control for greenhouse environment , 2015 .

[122]  Liang Meihui,et al.  Greenhouse temperature predictive control for energy saving using switch actuators , 2018 .

[123]  Fang Xu,et al.  Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method , 2016, Neurocomputing.

[124]  Qianwei Zhou,et al.  A fast online multivariable identification method for greenhouse environment control problems , 2018, Neurocomputing.

[125]  C. Schugurensky,et al.  Optimal greenhouse control of tomato-seedling crops , 2006 .

[126]  Hans-Peter Kläring,et al.  Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield , 2007 .

[127]  Girma Gebresenbet,et al.  Life cycle analysis of organic tomato production and supply in Sweden , 2018, Journal of Cleaner Production.

[128]  Daoliang Li,et al.  Automatic carbon dioxide enrichment strategies in the greenhouse: A review , 2018, Biosystems Engineering.

[129]  Narendra Singh Raghuwanshi,et al.  Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges , 2015, Comput. Electron. Agric..

[130]  Fathi Fourati,et al.  A GREENHOUSE NEURAL CONTROL USING GENERALIZED AND SPECIALIZED LEARNING , 2011 .

[131]  Steven B. Young,et al.  Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities , 2017 .

[132]  Fathi Fourati Multiple neural control of a greenhouse , 2014, Neurocomputing.

[133]  Rodrigo Castañeda-Miranda,et al.  Fuzzy Greenhouse Climate Control System based on a Field Programmable Gate Array , 2006 .

[134]  J. Boaventura Cunha,et al.  Greenhouse air temperature predictive control using the particle swarm optimisation algorithm , 2005 .

[135]  William R. Whalley,et al.  A novel dielectric tensiometer enabling precision PID-based irrigation control of polytunnel-grown strawberries in coir , 2018 .

[136]  E. Fitz-Rodríguez,et al.  Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application , 2010 .

[137]  Jean-François Balmat,et al.  Temperature control in a MISO greenhouse by inverting its fuzzy model , 2016, Comput. Electron. Agric..

[138]  I. López-Cruz,et al.  Improving climate monitoring in greenhouse cultivation via model based filtering , 2019, Biosystems Engineering.

[139]  Alejandro Castañeda-Miranda,et al.  Smart frost control in greenhouses by neural networks models , 2017, Comput. Electron. Agric..

[140]  Raphael Linker,et al.  Robust climate control of a greenhouse equipped with variable-speed fans and a variable-pressure fogging system , 2011 .

[141]  G. N. Tiwari,et al.  Estimation of an efficiency factor for a greenhouse : a numerical and experimental study , 1998 .

[142]  James E. Braun,et al.  DEVELOPMENT AND APPLICATION OF AN INVERSE BUILDING MODEL FOR DEMAND RESPONSE IN SMALL COMMERCIAL BUILDINGS , 2016 .

[143]  Gm. Shafiullah,et al.  Modeling techniques used in building HVAC control systems: A review , 2017 .

[144]  Ji Yuhan,et al.  An improved method for prediction of tomato photosynthetic rate based on WSN in greenhouse. , 2016 .

[145]  Omer Tatari,et al.  A dynamic modeling approach to highway sustainability: Strategies to reduce overall impact , 2012 .

[146]  Efthimios Kyriannakis,et al.  ON–LINE IMPROVEMENT FOR THE DECENTRALIZED PREDICTIVE CONTROL OF THE HEAT DYNAMICS OF A GREENHOUSE , 2002 .

[147]  M. Zarei,et al.  Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse , 2017, Journal of the Saudi Society of Agricultural Sciences.

[148]  Rui Liu,et al.  A study on thermal calculation method for a plastic greenhouse with solar energy storage and heating , 2017 .

[149]  Ondrej Krejcar,et al.  Design and Realization of Low Cost Control for Greenhouse Environment with Remote Control , 2015 .

[150]  Min Huang,et al.  Precise control and prediction of the greenhouse growth environment of Dendrobium candidum , 2018, Comput. Electron. Agric..

[151]  Farrokh Janabi-Sharifi,et al.  Theory and applications of HVAC control systems – A review of model predictive control (MPC) , 2014 .

[152]  Xavier Blasco,et al.  Model-based predictive control of greenhouse climate for reducing energy and water consumption , 2007 .

[153]  A. Baille TRENDS IN GREENHOUSE TECHNOLOGY FOR IMPROVED CLIMATE CONTROL IN MILD WINTER CLIMATES , 2001 .

[154]  Xiaoying Wu,et al.  Bridging energy performance gaps of green office buildings via more targeted operations management: A system dynamics approach. , 2019, Journal of environmental management.

[155]  Zhao Yang Dong,et al.  An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine , 2018, Renewable Energy.

[156]  E. Heuvelink,et al.  Productivity of a building-integrated roof top greenhouse in a Mediterranean climate , 2017 .

[157]  Lihong Xu,et al.  Adaptive Fuzzy Control of a Class of MIMO Nonlinear System With Actuator Saturation for Greenhouse Climate Control Problem , 2016, IEEE Transactions on Automation Science and Engineering.

[158]  Justin J. Henriques,et al.  Preliminary Design of a Low-cost Greenhouse with Open Source Control Systems☆ , 2015 .

[159]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[160]  Azaza Maher,et al.  An intelligent system for the climate control and energy savings in agricultural greenhouses , 2016, Energy Efficiency.

[161]  António E. Ruano,et al.  Neural network models in greenhouse air temperature prediction , 2002, Neurocomputing.

[162]  Lino Guimarães Marujo,et al.  Using fuzzy logic to implement decision policies in system dynamics models , 2016, Expert Syst. Appl..

[163]  Lihong Xu,et al.  A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy , 2011, Sensors.

[164]  Anastasios I. Dounis,et al.  Advanced control systems engineering for energy and comfort management in a building environment--A review , 2009 .

[165]  Amir Vadiee,et al.  Energy management strategies for commercial greenhouses , 2014 .

[166]  Yunjun Xu,et al.  Adaptive control theory and applications , 2012 .

[167]  Per-Olof Gutman,et al.  Optimal CO2 control in a greenhouse modeled with neural networks , 1998 .

[168]  L. G. van Willigenburg,et al.  Sensitivity of on-line RHOC of greenhouse climate to adjoint variables for the crop , 1999 .

[169]  C. Reece Evaluation of a Line Heat Dissipation Sensor for Measuring Soil Matric Potential , 1996 .

[170]  Che-Lun Hung,et al.  A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses , 2016, Precision Agriculture.

[171]  Karli Verghese,et al.  Systematic review of greenhouse gas emissions for different fresh food categories , 2017 .

[172]  Ning Wang,et al.  Review: Wireless sensors in agriculture and food industry-Recent development and future perspective , 2006 .

[173]  G. van Straten,et al.  Receding Horizon Optimal Control of a Solar Greenhouse , 2005 .

[174]  Xu Dan,et al.  Robust model predictive control for greenhouse temperature based on particle swarm optimization , 2018, Information Processing in Agriculture.

[175]  A. T. Cate,et al.  Modelling and (adaptive) control of greenhouse climates , 1984 .

[176]  P. Helo,et al.  Role of renewable energy policies in energy dependency in Finland: System dynamics approach , 2014 .

[177]  Sai Hin Lai,et al.  The state-of-the-art system dynamics application in integrated water resources modeling. , 2018, Journal of environmental management.

[178]  Ravendra Singh,et al.  Advanced Model Predictive Feedforward/Feedback Control of a Tablet Press , 2017, Journal of Pharmaceutical Innovation.

[179]  Enrico Fabrizio,et al.  Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection , 2012 .

[180]  Peter E. D. Love,et al.  A system dynamics model for assessing the impacts of design errors in construction projects , 2013, Math. Comput. Model..

[181]  G. Andreescu,et al.  Comparison study of PID controller tuning for greenhouse climate with feedback-feedforward linearization and decoupling , 2012, 2012 16th International Conference on System Theory, Control and Computing (ICSTCC).

[182]  Liang Meihui,et al.  Adaptive Feedback Linearization-based Predictive Control for Greenhouse Temperature , 2018 .

[183]  P. A. van Weel,et al.  Climate control based on stomatal behavior in a semi-closed greenhouse system 'Aircokas' , 2008 .

[184]  Lihong Xu,et al.  Nonlinear adaptive Neuro-PID controller design for greenhouse environment based on RBF network , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[185]  吴宇哲 Application of system dynamics for assessment of sustainable performance of construction projects , 2005 .

[186]  A. A. Rijsdijk,et al.  Temperature integration on a 24-hour base: a more efficient climate control strategy. , 2000 .

[187]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[188]  Konstantinos P. Ferentinos,et al.  Wireless sensor networks for greenhouse climate and plant condition assessment , 2017 .

[189]  Magdi A. Koutb,et al.  Environmental control for plants using intelligent control systems , 2004 .

[190]  Jan G. Pieters,et al.  Modelling greenhouse temperature using system identification by means of neural networks , 2004, Neurocomputing.

[191]  Mahesh Chand Singh,et al.  Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media , 2018, Comput. Electron. Agric..

[192]  H.-J. Tantau,et al.  Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control , 2005 .

[193]  Pedro Ponce,et al.  Towards Sustainability of Protected Agriculture: Automatic Control and Structural Technologies Integration of an Intelligent Greenhouse , 2013 .

[194]  Tatiana Gualotuña,et al.  A System for the Monitoring and Predicting of Data in Precision Agriculture in a Rose Greenhouse Based on Wireless Sensor Networks , 2017, CENTERIS/ProjMAN/HCist.

[195]  Oliver Iliev,et al.  A Fuzzy Logic Based Approach for Integrated Control of Protected Cultivation , 2013 .

[196]  E. J. van Henten,et al.  Open-loop optimal temperature control in greenhouses , 2008 .

[197]  M Azaza,et al.  Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring. , 2016, ISA transactions.

[198]  M. Berenguel,et al.  Application of artificial neural networks for greenhouse climate modelling , 1999, 1999 European Control Conference (ECC).

[199]  G. S. Campbell,et al.  Calibration and Temperature Correction of Heat Dissipation Matric Potential Sensors , 2002 .

[200]  Lihong Xu,et al.  Energy-saving control of greenhouse climate based on MOCC strategy , 2009, GEC '09.

[201]  Juan Carlos López,et al.  IMPROVING EFFICIENCY OF GREENHOUSE HEATING SYSTEMS USING MODEL PREDICTIVE CONTROL , 2005 .

[202]  Peter E.D. Love,et al.  Modeling tunnel construction risk dynamics: Addressing the production versus protection problem , 2016 .

[203]  Cecilia Stanghellini,et al.  Plant factories versus greenhouses: Comparison of resource use efficiency , 2018 .

[204]  Francisco Rodríguez,et al.  Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation , 2011 .

[205]  Feniosky Peña-Mora,et al.  Strategic-Operational Construction Management: Hybrid System Dynamics and Discrete Event Approach , 2008 .

[206]  Wenjian Cai,et al.  PID autotuner and its application in HVAC systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[207]  P. Ferrão,et al.  Building-Integrated Agriculture (BIA) in Urban Contexts: Testing a Simulation-Based Decision Support Workflow , 2017, Building Simulation Conference Proceedings.

[208]  Jan Pieters,et al.  Modelling the thermal performance of a naturally ventilated greenhouse in Zimbabwe using a dynamic greenhouse climate model , 2013 .

[209]  Fu Zhao,et al.  A comparative life cycle assessment (LCA) of lighting technologies for greenhouse crop production , 2017 .

[210]  Amir Vadiee,et al.  Energy analysis of fuel cell system for commercial greenhouse application – A feasibility study , 2015 .

[211]  Louis D. Albright,et al.  Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control , 2000 .

[212]  Olivier Jolliet,et al.  HORTICERN: an improved static model for predicting the energy consumption of a greenhouse , 1991 .

[213]  J. Campen Dehumidification of greenhouses , 2009 .

[214]  Jinsheng Zhou,et al.  Manage system for internet of things of greenhouse based on GWT , 2018 .

[215]  R. Shamshiri,et al.  A Review of Greenhouse Climate Control and Automation Systems in Tropical Regions , 2013 .

[216]  Hai-Gen Hu,et al.  RBF Network Based Nonlinear Model Reference Adaptive PD Controller Design for Greenhouse Climate , 2011 .