Regularization, sparse recovery, and median-of-means tournaments
暂无分享,去创建一个
[1] J. Hoffmann-jorgensen. Probability in Banach Space , 1977 .
[2] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[3] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[4] A. Goldenshluger. On Spatial Adaptive Estimation of Nonparametric Regression , 2004 .
[5] V. Koltchinskii,et al. Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .
[6] Jean-Yves Audibert,et al. Robust linear least squares regression , 2010, 1010.0074.
[7] M. Lerasle,et al. ROBUST EMPIRICAL MEAN ESTIMATORS , 2011, 1112.3914.
[8] S. Mendelson,et al. Learning subgaussian classes : Upper and minimax bounds , 2013, 1305.4825.
[9] Daniel J. Hsu,et al. Approximate loss minimization with heavy tails , 2013, ArXiv.
[10] S. Mendelson,et al. Compressed sensing under weak moment assumptions , 2014, 1401.2188.
[11] Shahar Mendelson,et al. Learning without Concentration , 2014, COLT.
[12] S. Mendelson. Upper bounds on product and multiplier empirical processes , 2014, 1410.8003.
[13] Emmanuel J. Candès,et al. SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax , 2015, ArXiv.
[14] Weijie J. Su,et al. SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION. , 2014, The annals of applied statistics.
[15] S. Mendelson. On aggregation for heavy-tailed classes , 2015, Probability Theory and Related Fields.
[16] G. Lugosi,et al. Empirical risk minimization for heavy-tailed losses , 2014, 1406.2462.
[17] Stanislav Minsker. Geometric median and robust estimation in Banach spaces , 2013, 1308.1334.
[18] Shahar Mendelson,et al. `local' vs. `global' parameters -- breaking the gaussian complexity barrier , 2015, 1504.02191.
[19] S. Mendelson,et al. Regularization and the small-ball method I: sparse recovery , 2016, 1601.05584.
[20] G. Lugosi,et al. Risk minimization by median-of-means tournaments , 2016, Journal of the European Mathematical Society.
[21] S. Mendelson. An optimal unrestricted learning procedure , 2017, 1707.05342.
[22] Lecu'e Guillaume,et al. Learning from MOM's principles , 2017 .
[23] S. Mendelson. On Multiplier Processes Under Weak Moment Assumptions , 2016, 1601.06523.
[24] A. Tsybakov,et al. Slope meets Lasso: Improved oracle bounds and optimality , 2016, The Annals of Statistics.
[25] Soumendu Sundar Mukherjee,et al. Weak convergence and empirical processes , 2019 .
[26] Lecu'e Guillaume,et al. Learning from MOM’s principles: Le Cam’s approach , 2017, Stochastic Processes and their Applications.
[27] G. Lugosi,et al. Sub-Gaussian estimators of the mean of a random vector , 2017, The Annals of Statistics.