A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis
暂无分享,去创建一个
[1] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[2] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[3] Gabriel N. Gatica,et al. A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate , 2002, Numerische Mathematik.
[4] G. Gatica,et al. A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .
[5] Gabriel N. Gatica,et al. A mixed‐FEM formulation for nonlinear incompressible elasticity in the plane , 2002 .
[6] Norbert Heuer,et al. An implicit–explicit residual error estimator for the coupling of dual‐mixed finite elements and boundary elements in elastostatics , 2001 .
[7] E. Stephan,et al. Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity , 2001 .
[8] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[9] Erwin Stein,et al. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems , 1998 .