Prius: generic hybrid trace compression for wireless sensor networks

Several diagnostic tracing techniques (e.g., event, power, and control-flow tracing) have been proposed for run-time debugging and postmortem analysis of wireless sensor networks (WSNs). Traces generated by such techniques can become large, defying the harsh resource constraints of WSNs. Compression is a straightforward candidate to reduce trace sizes, yet is challenged by the same resource constraints. Established trace compression algorithms perform unsatisfactorily under these constraints. We propose Prius, a novel hybrid (offline/online) trace compression technique that enables application of established trace compression algorithms for WSNs and achieves high compression rates and significant energy savings. We have implemented such hybrid versions of two established compression techniques for TinyOS and evaluated them on various applications. Prius respects the resource constraints of WSNs (5% average program memory overhead) whilst reducing energy consumption on average by 46% and 49% compared to straightforward online adaptations of established compression algorithms and the state-of-the-art trace-specific compression algorithm respectively.

[1]  Richard Han,et al.  NodeMD: diagnosing node-level faults in remote wireless sensor systems , 2007, MobiSys '07.

[2]  François Ingelrest,et al.  The hitchhiker's guide to successful wireless sensor network deployments , 2008, SenSys '08.

[3]  Gustavo de Veciana,et al.  Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation , 2004, IEEE Journal on Selected Areas in Communications.

[4]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[5]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[6]  Xin Jin,et al.  Diagnostic powertracing for sensor node failure analysis , 2010, IPSN '10.

[7]  Craig G. Nevill-Manning,et al.  Compression and Explanation Using Hierarchical Grammars , 1997, Comput. J..

[8]  Margaret Martonosi,et al.  Data compression algorithms for energy-constrained devices in delay tolerant networks , 2006, SenSys '06.

[9]  Jiawei Han,et al.  Dustminer: troubleshooting interactive complexity bugs in sensor networks , 2008, SenSys '08.

[10]  Kamin Whitehouse,et al.  Clairvoyant: a comprehensive source-level debugger for wireless sensor networks , 2007, SenSys '07.

[11]  Eric Eide,et al.  Efficient memory safety for TinyOS , 2007, SenSys '07.

[12]  Patrick Th. Eugster,et al.  Efficient diagnostic tracing for wireless sensor networks , 2010, SenSys '10.

[13]  Kannan Ramchandran,et al.  Distributed compression in a dense microsensor network , 2002, IEEE Signal Process. Mag..

[14]  A. Apostolico,et al.  Off-line compression by greedy textual substitution , 2000, Proceedings of the IEEE.

[15]  Matt Welsh,et al.  Fidelity and yield in a volcano monitoring sensor network , 2006, OSDI '06.

[16]  M. Horton MICA: The Commercialization of Microsensor Motes , 2002 .

[17]  James E. Smith,et al.  The predictability of data values , 1997, Proceedings of 30th Annual International Symposium on Microarchitecture.

[18]  Adam Dunkels,et al.  Efficient Sensor Network Reprogramming through Compression of Executable Modules , 2008, 2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[19]  Christos Strydis,et al.  Profiling of lossless-compression algorithms for a novel biomedical-implant architecture , 2008, CODES+ISSS '08.

[20]  Matt Welsh,et al.  Simulating the power consumption of large-scale sensor network applications , 2004, SenSys '04.

[21]  Rodolfo Azevedo,et al.  Mixed static/dynamic profiling for dictionary based code compression , 2003, Proceedings. 2003 International Symposium on System-on-Chip (IEEE Cat. No.03EX748).

[22]  Deborah Estrin,et al.  Directed diffusion for wireless sensor networking , 2003, TNET.

[23]  Koen De Bosschere,et al.  Differential FCM: increasing value prediction accuracy by improving table usage efficiency , 2001, Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture.

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[25]  Yücel Altunbasak,et al.  PINCO: a pipelined in-network compression scheme for data collection in wireless sensor networks , 2003, Proceedings. 12th International Conference on Computer Communications and Networks (IEEE Cat. No.03EX712).

[26]  H. Lekatsas,et al.  Design of an one-cycle decompression hardware for performance increase in embedded systems , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).

[27]  Jens Palsberg,et al.  Avrora: scalable sensor network simulation with precise timing , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[28]  Krste Asanovic,et al.  Energy Aware Lossless Data Compression , 2003, MobiSys.

[29]  Patrick Th. Eugster,et al.  Demo abstract: Diagnostic tracing of wireless sensor networks with TinyTracer , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[30]  Martin Burtscher,et al.  VPC3: a fast and effective trace-compression algorithm , 2004, SIGMETRICS '04/Performance '04.

[31]  Mani B. Srivastava,et al.  Scoped identifiers for efficient bit aligned logging , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[32]  J. Larus Whole program paths , 1999, PLDI '99.

[33]  Koen Langendoen,et al.  Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[34]  Mani B. Srivastava,et al.  Optimizing Bandwidth of Call Traces for Wireless Embedded Systems , 2009, IEEE Embedded Systems Letters.

[35]  Jan Beutel,et al.  Wireless Sensor Networks in Permafrost Research – Concept, Requirements, Implementation and Challenges , 2008 .

[36]  Ulrich Germann,et al.  Tightly Packed Tries: How to Fit Large Models into Memory, and Make them Load Fast, Too , 2009 .

[37]  François Ingelrest,et al.  SensorScope: Application-specific sensor network for environmental monitoring , 2010, TOSN.

[38]  Lothar Thiele,et al.  Learning from sensor network data , 2009, SenSys '09.

[39]  Martin Burtscher,et al.  Compressing extended program traces using value predictors , 2003, 2003 12th International Conference on Parallel Architectures and Compilation Techniques.

[40]  John S. Baras,et al.  ATEMU: a fine-grained sensor network simulator , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[41]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[42]  Jan Beutel,et al.  Deployment Techniques for Sensor Networks , 2010 .

[43]  Alistair Moffat,et al.  Off-line dictionary-based compression , 1999, Proceedings of the IEEE.

[44]  David E. Culler,et al.  TOSSIM: accurate and scalable simulation of entire TinyOS applications , 2003, SenSys '03.

[45]  Yuan Xie,et al.  LZW-based code compression for VLIW embedded systems , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[46]  Ronald L. Rivest,et al.  Introduction to Algorithms, 3rd Edition , 2009 .

[47]  John Anderson,et al.  An analysis of a large scale habitat monitoring application , 2004, SenSys '04.

[48]  Deborah Estrin,et al.  An evaluation of multi-resolution storage for sensor networks , 2003, SenSys '03.

[49]  James A. Storer,et al.  Data compression via textual substitution , 1982, JACM.