Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice.

[1]  I. Dunand-Sauthier,et al.  Selective Up-Regulation of Intact, but Not Defective env RNAs of Endogenous Modified Polytropic Retrovirus by the Sgp3 Locus of Lupus-Prone Mice1 , 2009, The Journal of Immunology.

[2]  Sandra D'Alfonso,et al.  Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. , 2009, The Journal of clinical investigation.

[3]  T. Moll,et al.  Protection of Murine Systemic Lupus by the Ea Transgene without Expression of I-E Heterodimers1 , 2008, The Journal of Immunology.

[4]  M. Gilliet,et al.  Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases , 2008, Nature Reviews Immunology.

[5]  S. Akira,et al.  Evidence for Genes in Addition to Tlr7 in the Yaa Translocation Linked with Acceleration of Systemic Lupus Erythematosus1 , 2008, The Journal of Immunology.

[6]  John E. Connolly,et al.  Yaa autoimmune phenotypes are conferred by overexpression of TLR7 , 2008, European journal of immunology.

[7]  R. Coffman,et al.  Treatment of lupus‐prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms , 2007, European journal of immunology.

[8]  J. Ward,et al.  Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. , 2007, Immunity.

[9]  R. Coffman,et al.  Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists , 2007, Nature Medicine.

[10]  H. Ploegh,et al.  The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling , 2007, The Journal of cell biology.

[11]  Jianyong Wang,et al.  The Functional Effects of Physical Interactions among Toll-like Receptors 7, 8, and 9* , 2006, Journal of Biological Chemistry.

[12]  N. Olsen,et al.  Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes , 2006, Clinical and experimental immunology.

[13]  J. Shupe,et al.  Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. , 2006, Immunity.

[14]  S. Akira,et al.  Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. , 2006, Immunity.

[15]  T. Winkler,et al.  Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE. , 2006, International immunology.

[16]  P. Courville,et al.  Role of TLR9 in Anti-Nucleosome and Anti-DNA Antibody Production in lpr Mutation-Induced Murine Lupus1 , 2006, The Journal of Immunology.

[17]  Quanzhen Li,et al.  A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Satterthwaite,et al.  Autoreactive B Cell Responses to RNA-Related Antigens Due to TLR7 Gene Duplication , 2006, Science.

[19]  A. Aderem,et al.  TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE , 2006, The Journal of Experimental Medicine.

[20]  T. Moll,et al.  Contribution of NZB Autoimmunity 2 to Y-Linked Autoimmune Acceleration-Induced Monocytosis in Association with Murine Systemic Lupus1 , 2006, The Journal of Immunology.

[21]  S. Grinstein,et al.  The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9 , 2006, Nature Immunology.

[22]  Chandra Mohan,et al.  Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. , 2005, The Journal of clinical investigation.

[23]  S. Akira,et al.  RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement , 2005, The Journal of experimental medicine.

[24]  S. Akira,et al.  Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus , 2005, The Journal of experimental medicine.

[25]  T. Moll,et al.  Selective expansion of a monocyte subset expressing the CD11c dendritic cell marker in the Yaa model of systemic lupus erythematosus. , 2005, Arthritis and rheumatism.

[26]  S. Akira,et al.  Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus , 2005, The Journal of experimental medicine.

[27]  S. Xiong,et al.  Specific siRNA downregulated TLR9 and altered cytokine expression pattern in macrophage after CpG DNA stimulation. , 2005, Cellular & molecular immunology.

[28]  T. Moll,et al.  Differential Role of Three Major New Zealand Black-Derived Loci Linked with Yaa-Induced Murine Lupus Nephritis1 , 2005, The Journal of Immunology.

[29]  S. Akira,et al.  Toll-like receptors in innate immunity. , 2004, International immunology.

[30]  D. Isenberg,et al.  Is α-actinin a target for pathogenic anti-DNA antibodies in lupus nephritis? , 2004 .

[31]  K. Tung,et al.  Breaking Tolerance to Double Stranded DNA, Nucleosome, and Other Nuclear Antigens Is Not Required for the Pathogenesis of Lupus Glomerulonephritis , 2004, The Journal of experimental medicine.

[32]  M. Shlomchik,et al.  Activation of autoreactive B cells by CpG dsDNA. , 2003, Immunity.

[33]  M. Wiznerowicz,et al.  Conditional Suppression of Cellular Genes: Lentivirus Vector-Mediated Drug-Inducible RNA Interference , 2003, Journal of Virology.

[34]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[35]  M. Wener,et al.  Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. , 2003, The Journal of rheumatology.

[36]  M. Shlomchik,et al.  Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors , 2002, Nature.

[37]  C. Putterman,et al.  α-Actinin Is a Cross-Reactive Renal Target for Pathogenic Anti-DNA Antibodies1 , 2002, The Journal of Immunology.

[38]  S. Akira,et al.  Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway , 2002, Nature Immunology.

[39]  L. Rönnblom,et al.  A Pivotal Role for the Natural Interferon α–producing Cells (Plasmacytoid Dendritic Cells) in the Pathogenesis of Lupus , 2001 .

[40]  G. Peltz,et al.  Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. , 2001, Immunity.

[41]  M. Monestier,et al.  Lupus anti‐DNA autoantibodies cross‐react with a glomerular structural protein: a case for tissue injury by molecular mimicry , 2001, European journal of immunology.

[42]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[43]  D. Jarrossay,et al.  Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon , 1999, Nature Medicine.

[44]  B. Croker,et al.  Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. , 1999, The Journal of clinical investigation.

[45]  N. Kadowaki,et al.  The nature of the principal type 1 interferon-producing cells in human blood. , 1999, Science.

[46]  G. Gilkeson,et al.  Nephritogenic autoantibodies in lupus: current concepts and continuing controversies. , 1996, Arthritis and rheumatism.

[47]  B. Kotzin Systemic Lupus Erythematosus , 1996, Cell.

[48]  S. Izui,et al.  H‐2‐linked control of the Yaa gene‐induced acceleration of lupus‐like autoimmune disease in BXSB mice , 1992, European journal of immunology.

[49]  M. Madaio,et al.  A murine nephritogenic monoclonal anti‐DNA autoantibody binds directly to mouse laminin, the major non‐collagenous protein component of the glomerular basement membrane , 1989, European journal of immunology.

[50]  S. Izui,et al.  The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus‐like syndrome in (NZW × C57BL/6)F1 male mice, but not in C57BL/6 male mice , 1988, European journal of immunology.

[51]  P. Lambert,et al.  Autoimmunity after induction of neonatal tolerance to alloantigens: role of B cell chimerism and F1 donor B cell activation. , 1986, Journal of immunology.

[52]  L. van de Putte,et al.  Cross-reactivity of human and murine anti-DNA antibodies with heparan sulfate. The major glycosaminoglycan in glomerular basement membranes. , 1986, The Journal of clinical investigation.

[53]  W. Seaman,et al.  Monocytosis in the BXSB model for systemic lupus erythematosus , 1984, Journal of Experimental Medicine.

[54]  A. Theofilopoulos,et al.  Association of circulating retroviral gp70-anti-gp70 immune complexes with murine systemic lupus erythematosus , 1979, The Journal of experimental medicine.

[55]  A. Theofilopoulos,et al.  Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains , 1978, The Journal of experimental medicine.

[56]  J. August,et al.  THE VIRAL ENVELOPE GLYCOPROTEIN OF MURINE LEUKEMIA VIRUS AND THE PATHOGENESIS OF IMMUNE COMPLEX GLOMERULONEPHRITIS OF NEW ZEALAND MICE , 1974, The Journal of experimental medicine.

[57]  S. Peng,et al.  Toll-like receptor 9 signaling protects against murine lupus. , 2006, Arthritis and rheumatism.

[58]  B. Beutler,et al.  TYPE I INTERFERONS (/) IN IMMUNITY AND AUTOIMMUNITY , 2005 .

[59]  S. Akira,et al.  A Novel Toll-Like Receptor that Recognizes Bacterial DNA , 2002 .