Extreme-ANFIS: A novel learning approach for inverse model control of Nonlinear Dynamical Systems

The paper proposes a novel, simple and faster learning approach named `Extreme-ANFIS' to tune premise and consequent parameters of Takagi-Sugeno Fuzzy Inference System (TS-FIS). Further the Extreme-ANFIS is used to design inverse model of nonlinear dynamical system. In this paper, the product concentration of non-isothermal Continuous Stirred Tank Reactor (CSTR) is controlled effectively by controlling inlet reactant temperature by using the Extreme-ANFIS based inverse model control technique. The effectiveness of proposed controller is verified by simulating it in MATLAB and comparing with conventional PID control.

[1]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[2]  K. S. Narendra,et al.  Neural networks for control theory and practice , 1996, Proc. IEEE.

[3]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[4]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[5]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[6]  Pushpak Jagtap,et al.  Comparison of extreme-ANFIS and ANFIS networks for regression problems , 2014, 2014 IEEE International Advance Computing Conference (IACC).

[7]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Kumpati S. Narendra,et al.  Issues in the application of neural networks for tracking based on inverse control , 1999, IEEE Trans. Autom. Control..

[9]  Dianhui Wang,et al.  Extreme learning machines: a survey , 2011, Int. J. Mach. Learn. Cybern..

[10]  Adi Ben-Israel,et al.  Some Topics in Generalized Inverses of Matrices , 1976 .

[11]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[12]  Michio Sugeno,et al.  An introductory survey of fuzzy control , 1985, Inf. Sci..

[13]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[14]  D. C. Psichogios,et al.  Nonlinear internal model control and model predictive control using neural networks , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[15]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[16]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[17]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[18]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Adi Ben-Israel,et al.  On Iterative Computation of Generalized Inverses and Associated Projections , 1966 .

[20]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[21]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .