Chabazite and zeolite 13X for CO2 capture under high pressure and moderate temperature conditions.

Mesoporous chabazite ion-exchanged with Ca(2+) was effective for CO2 capture at 20 bar and 473 K, whereas 13X as a support material enabled recyclable carbonation of ca. 8 wt% Mg(OH)2 approaching the theoretical maximum for CO2 capture with 10% H2O.

[1]  Klaus S. Lackner,et al.  Kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide , 1996 .

[2]  P. Webley,et al.  Potassium Chabazite: A Potential Nanocontainer for Gas Encapsulation , 2010 .

[3]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[4]  R. Lobo,et al.  Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[5]  Qiang Wang,et al.  Synthesis of nano-sized spherical Mg3Al–CO3 layered double hydroxide as a high-temperature CO2 adsorbent , 2013 .

[6]  K. Yogo,et al.  Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure , 2012 .

[7]  Qiang Zhao,et al.  Adsorption of CO2, CH4, and N2 on Gas Diameter Grade Ion-Exchange Small Pore Zeolites , 2012 .

[8]  S. Walspurger,et al.  Correlation between structural rearrangement of hydrotalcite-type materials and CO2 sorption processes under pre-combustion decarbonisation conditions , 2011 .

[9]  Jun Zhang,et al.  Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture , 2008 .

[10]  Seung-Tae Yang,et al.  Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. , 2009, Chemical communications.

[11]  R. Siriwardane,et al.  Adsorption of CO2 on Zeolites at Moderate Temperatures , 2005 .

[12]  Marc Marshall,et al.  CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X) , 2009 .

[13]  A. Teja,et al.  Precipitation and growth of magnesium hydroxide nanopetals on zeolite 4A surfaces , 2011 .

[14]  J. J. Pis,et al.  Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[15]  P. Webley,et al.  High temperature materials for CO2 capture , 2009 .

[16]  Atsushi Tsutsumi,et al.  System modeling of exergy recuperated IGCC system with pre- and post-combustion CO2 capture , 2013 .

[17]  R. Siriwardane,et al.  Novel Regenerable Magnesium Hydroxide Sorbents for CO2 Capture at Warm Gas Temperatures , 2009 .

[18]  A. Teja,et al.  Synthesis, deposition and characterization of magnesium hydroxide nanostructures on zeolite 4A , 2011 .

[19]  Krijn P. de Jong,et al.  Support and Size Effects of Activated Hydrotalcites for Precombustion CO2 Capture , 2010 .

[20]  Douglas M. Ruthven,et al.  The Effect of Water on the Adsorption of CO2 and C3H8 on Type X Zeolites , 2004 .

[21]  P. Webley,et al.  CO2 capture at elevated temperatures by cyclic adsorption processes , 2012 .