Growth of Sobolev norms for coupled lowest Landau level equations

We study coupled systems of nonlinear lowest Landau level equations, for which we prove global existence results with polynomial bounds on the possible growth of Sobolev norms of the solutions. We also exhibit explicit unbounded trajectories which show that these bounds are optimal.

[1]  O. Evnin,et al.  Turbulent cascades in a truncation of the cubic Szegő equation and related systems , 2020, Analysis & PDE.

[2]  G. Ferriere Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation , 2020, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[3]  Laurent Thomann Growth of Sobolev norms for linear Schr{\"o}dinger operators , 2020, 2006.02674.

[4]  N. Tzvetkov,et al.  On the asymptotic behavior of high order moments for a family of Schrödinger equations , 2020, 2004.05850.

[5]  Marine De Clerck,et al.  Time-periodic quantum states of weakly interacting bosons in a harmonic trap , 2020, 2003.03684.

[6]  G. Ferriere The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition , 2019, Discrete & Continuous Dynamical Systems - A.

[7]  Y. Martel,et al.  INTERACTION OF SOLITONS FROM THE PDE POINT OF VIEW , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[8]  I. Nenciu,et al.  Stability and instability properties of rotating Bose–Einstein condensates , 2018, Letters in Mathematical Physics.

[9]  O. Evnin,et al.  Solvable Cubic Resonant Systems , 2018, Communications in Mathematical Physics.

[10]  B. Craps,et al.  Two infinite families of resonant solutions for the Gross-Pitaevskii equation , 2018, Physical Review E.

[11]  Joseph Thirouin Optimal bounds for the growth of Sobolev norms of solutions of a quadratic Szegő equation , 2017, Transactions of the American Mathematical Society.

[12]  P. Gérard,et al.  On the Cubic Lowest Landau Level Equation , 2017, Archive for Rational Mechanics and Analysis.

[13]  R. Carles,et al.  Universal dynamics for the defocusing logarithmic Schrödinger equation , 2016, Duke Mathematical Journal.

[14]  B. Craps,et al.  Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates , 2017, 1705.00867.

[15]  P. Gérard,et al.  The cubic Szegő equation and Hankel operators , 2015, Astérisque.

[16]  Victor Vilacca da Rocha Modified scattering and beating effect for coupled Schr\"odinger systems on product spaces with small initial data , 2016, 1609.03848.

[17]  Alex H. Ardila,et al.  Orbital stability of Gausson solutions to logarithmic Schr\"odinger equations , 2016, 1607.01479.

[18]  Haiyan Xu Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation , 2015, 1506.07350.

[19]  Stefan Le Coz,et al.  Multi-speed solitary waves of nonlinear Schr{\"o}dinger systems: theoretical and numerical analysis , 2015, 1504.04976.

[20]  P. Germain,et al.  On the continuous resonant equation for NLS II: Statistical study , 2015, 1502.05643.

[21]  P. Germain,et al.  On the continuous resonant equation for NLS: I. Deterministic analysis , 2015, 1501.03760.

[22]  N. Tzvetkov,et al.  MODIFIED SCATTERING FOR THE CUBIC SCHRÖDINGER EQUATION ON PRODUCT SPACES AND APPLICATIONS , 2013, Forum of Mathematics, Pi.

[23]  Laurent Thomann,et al.  Asymptotic Behavior of the Nonlinear Schrödinger Equation with Harmonic Trapping , 2014, 1408.6213.

[24]  Haiyan Xu Large-time blowup for a perturbation of the cubic Szegő equation , 2013, 1307.5284.

[25]  Stefan Le Coz,et al.  Multi‐speed solitary wave solutions for nonlinear Schrödinger systems , 2012, J. Lond. Math. Soc..

[26]  Stefan Le Coz,et al.  Finite and infinite soliton and kink-soliton trains of nonlinear Schrödinger equations , 2014 .

[27]  Zaher Hani,et al.  Long-time Instability and Unbounded Sobolev Orbits for Some Periodic Nonlinear Schrödinger Equations , 2012, 1210.7509.

[28]  Laurent Thomann,et al.  Beating effects in cubic Schrödinger systems and growth of Sobolev norms , 2012, 1208.5680.

[29]  Kehe Zhu Analysis on Fock Spaces , 2012 .

[30]  Vadim Kaloshin,et al.  Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation with a convolution potential , 2012, 1205.5188.

[31]  V. Sohinger,et al.  Bounds on the growth of high Sobolev norms of solutions to Nonlinear Schrodinger Equations on $\mathbb{R}$ , 2010, 1003.5705.

[32]  Oana Pocovnicu Explicit formula for the solution of the Szeg , 2010, 1012.2943.

[33]  T. Tao,et al.  Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation , 2010 .

[34]  David Chiron,et al.  Traveling Waves for Nonlinear Schrödinger Equations with Nonzero Conditions at Infinity , 2012, Archive for Rational Mechanics and Analysis.

[35]  Lin Zhao,et al.  ON GLOBAL ROUGH SOLUTIONS TO A NON-LINEAR SCHRÖDINGER SYSTEM , 2009, Glasgow Mathematical Journal.

[36]  S. Serfaty,et al.  Lowest Landau level approach in superconductivity for the Abrikosov lattice close to $$H_{{c}_{2}}$$ , 2007 .

[37]  F. Nier BOSE-EINSTEIN CONDENSATES IN THE LOWEST LANDAU LEVEL: HAMILTONIAN DYNAMICS , 2007 .

[38]  F. Nier,et al.  Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates , 2006 .

[39]  J. Dalibard,et al.  Vortex patterns in a fast rotating Bose-Einstein condensate (11 pages) , 2004, cond-mat/0410665.

[40]  T. Ho,et al.  Two-component Bose-Einstein condensates with a large number of vortices. , 2002, Physical review letters.

[41]  T. Ho Bose-Einstein condensates with large number of vortices. , 2001, Physical review letters.

[42]  E. Carlen Some integral identities and inequalities for entire functions and their application to the coherent state transform , 1991 .

[43]  T. Cazenave Stable solutions of the logarithmic Schrödinger equation , 1983 .

[44]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .