Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics.

The ability of three known probiotic strains (two lactobacilli and one bifidobacterium) to ferment fructooligosaccharides (FOS) from yacon roots (Smallanthus sonchifolius Poepp. Endl) was compared to commercial FOS in this study. Results indicate that Lactobacillus acidophilus NRRL-1910, Lactobacillus plantarum NRRL B-4496, and Bifidobacterium bifidum ATCC 15696 were able to ferment yacon root FOS. FOS consumption apparently depended on the degree of polymerization and the initial FOS composition. L. plantarum NRRL B-4496 and L. acidophilus NRRL B-1910 completely utilized 1-kestose molecules, while B. bifidum was able to utilize 1-kestose molecules as well as molecules with a higher degree of polymerization.

[1]  R. Mckellar,et al.  Metabolism of fructo-oligosaccharides by Bifidobacterium spp. , 1989, Applied Microbiology and Biotechnology.

[2]  Ming-Ju Chen,et al.  Optimization of the Viability of Probiotics in a New Fermented Milk Drink by the Genetic Algorithms for Response Surface Modeling , 2003 .

[3]  H. Ono,et al.  Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius). , 2003, Journal of agricultural and food chemistry.

[4]  F. Schneider,et al.  Fermentations of fructo‐oligosaccharides and their components by Bifidobacterium infantis ATCC 15697 on batch culture in semi‐synthetic medium , 2001, Journal of applied microbiology.

[5]  R. Hutkins,et al.  Fermentation of Fructooligosaccharides by Lactic Acid Bacteria and Bifidobacteria , 2000, Applied and Environmental Microbiology.

[6]  A. Voragen,et al.  Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. , 2000, Journal of agricultural and food chemistry.

[7]  W. Verstraete,et al.  Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor) , 2000, Applied Microbiology and Biotechnology.

[8]  W. Kneifel In vitro growth behaviour of probiotic bacteria in culture media with carbohydrates of prebiotic importance , 2000 .

[9]  M. Ohnishi-Kameyama,et al.  Extraction and identification of antioxidants in the roots of yacon (Smallanthus sonchifolius). , 1999, Journal of agricultural and food chemistry.

[10]  L. Prosky,et al.  Methods to determine food inulin and oligofructose. , 1999, The Journal of nutrition.

[11]  K R Niness,et al.  Inulin and oligofructose: what are they? , 1999, The Journal of nutrition.

[12]  G. Gibson Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. , 1999, The Journal of nutrition.

[13]  G. Macfarlane,et al.  Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? , 1999, BMJ.

[14]  R. Hartemink Prebiotic effects of non-digestible oligo- and polysaccharides , 1999 .

[15]  R. Mackie,et al.  Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate , 1998, Journal of applied microbiology.

[16]  Macfarlane,et al.  Inter‐species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources , 1998 .

[17]  K. Arihara,et al.  Lactobacillus acidophilus Group Lactic Acid Bacteria Applied to Meat Fermentation , 1998 .

[18]  M. Roberfroid,et al.  Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. , 1996, Metabolism: clinical and experimental.

[19]  G. Slama,et al.  Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. , 1996, The American journal of clinical nutrition.

[20]  F. Nanjo,et al.  Isolation and Structural Analysis of Oligosaccharides from Yacon (Polymnia sonchifolia) , 1995 .

[21]  G R Gibson,et al.  Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. , 1995, The Journal of nutrition.

[22]  B. Biavati,et al.  The genus Bifidobacterium , 1995 .

[23]  A. Mazur,et al.  Digestibility of selected carbohydrates by anaerobic bacteria , 1993 .

[24]  R. Mckellar,et al.  Characterization of Growth and Inulinase Production by Bifidobacterium spp. on Fructooligosaccharides , 1993 .

[25]  R. Yamauchi,et al.  Fructooligosaccharides in the tubers of jerusalem artichoke [Helianthus tuberosus] and yacon [Polymnia sonchifolia] , 1991 .

[26]  J. Kurmann,et al.  The health potential of products containing bifidobacteria. , 1991 .

[27]  R. Mckellar,et al.  Bifidobacteria and bifidogenic factors , 1990 .

[28]  T. Ohyama,et al.  DETERMINATION OF THE STRUCTURE OF OLIGOFRUCTAN IN THE TULIP BULB , 1985 .

[29]  M. Itakura,et al.  Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects , 1984 .

[30]  T. Mitsuoka Taxonomy and Ecology of Bifidobacteria , 1984 .

[31]  T. Toba,et al.  Specific colour reaction for the detection of 1,2-linked reducing disaccharides on paper and thin-layer chromatograms , 1978 .

[32]  B. Campbell,et al.  Oxygen tolerance of human intestinal anaerobes. , 1977, The American journal of clinical nutrition.

[33]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .