The Bayesian Framework for Inverse Problems in Heat Transfer

The aim of this paper is to provide researchers dealing with inverse heat transfer problems a review of the Bayesian approach to inverse problems, the related modeling issues, and the methods that are used to carry out inference. In Bayesian inversion, the aim is not only to obtain a single point estimate for the unknown, but rather to characterize uncertainties in estimates, or predictions. Before any measurements are available, we have some uncertainty in the unknown. After carrying out measurements, the uncertainty has been reduced, and the task is to quantify this uncertainty, and in addition to give plausible suggestions for answers to questions of interest. The focus of this review is on the modeling-related topics in inverse problems in general, and the methods that are used to compute answers to questions. In particular, we build a scene of how to handle and model the unavoidable uncertainties that arise with real physical measurements. In addition to giving a brief review of existing Bayesian treatments of inverse heat transfer problems, we also describe approaches that might be successful with inverse heat transfer problems.

[1]  Y. Çengel Heat and Mass Transfer: Fundamentals and Applications , 2000 .

[2]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[3]  S. Fienberg When did Bayesian inference become "Bayesian"? , 2006 .

[4]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[5]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[6]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[7]  Bangti Jin,et al.  A Bayesian inference approach to the ill‐posed Cauchy problem of steady‐state heat conduction , 2008 .

[8]  E Somersalo,et al.  Statistical inversion for medical x-ray tomography with few radiographs: I. General theory. , 2003, Physics in medicine and biology.

[9]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[10]  Ashley F. Emery,et al.  Combining discrepancy models with hierarchical Bayesian inference for parameter estimation of very ill posed thermal problems , 2008 .

[11]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[12]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[13]  Fiorella Sgallari,et al.  Image inpainting with structural bootstrap priors , 2006, Image Vis. Comput..

[14]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[15]  J. Rosenthal,et al.  Department of , 1993 .

[16]  Jari P. Kaipio,et al.  Importance sampling approach for the nonstationary approximation error method , 2010 .

[17]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[18]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[19]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[20]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[21]  E. Somersalo,et al.  Compensation for geometric mismodelling by anisotropies in optical tomography. , 2005, Optics express.

[22]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[23]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[24]  J. Kaipio,et al.  Approximation error analysis in nonlinear state estimation with an application to state-space identification , 2007 .

[25]  Helcio R. B. Orlande,et al.  Salvador – Bahia – Brazil BAYESIAN ESTIMATION OF THE THERMAL CONDUCITIVITY COMPONENTS OF ORTHOTROPIC SOLIDS , 2009 .

[26]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[27]  O. Alifanov,et al.  Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems , 1995 .

[28]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[29]  J. R. Howard An experimental study of heat transfer through periodically contacting surfaces , 1976 .

[30]  Tanja Tarvainen,et al.  MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY , 2011 .

[31]  Håvard Rue,et al.  Advances in Bayesian Image Analysis , 2003 .

[32]  Derek B. Ingham,et al.  Application of the boundary element method to inverse heat conduction problems , 1996 .

[33]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[34]  Simon R. Arridge,et al.  An approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography , 2009 .

[35]  Walter R. Gilks,et al.  Introduction to general state-space Markov chain theory , 1995 .

[36]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[37]  Johannes Tausch,et al.  A fast method for solving the heat equation by layer potentials , 2007, J. Comput. Phys..

[38]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[39]  Bangti Jin,et al.  Fast Bayesian approach for parameter estimation , 2008 .

[40]  Jari P. Kaipio,et al.  Tikhonov regularization and prior information in electrical impedance tomography , 1998, IEEE Transactions on Medical Imaging.

[41]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[42]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[43]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[44]  E. Somersalo,et al.  Approximation errors and model reduction with an application in optical diffusion tomography , 2006 .

[45]  K. Gallagher,et al.  Stochastic thermal history modelling. 1. Constraining heat flow histories and their uncertainty , 2002 .

[46]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[47]  Napoleon Leoni,et al.  Bayesian surrogates for integrating numerical, analytical, and experimental data: application to inverse heat transfer in wearable computers , 2000 .

[48]  Walter R. Gilks,et al.  MCMC in image analysis , 1995 .

[49]  J. Kaipio,et al.  Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography , 2009 .

[50]  Tomi Huttunen,et al.  Determination of heterogeneous thermal parameters using ultrasound induced heating and MR thermal mapping , 2006, Physics in medicine and biology.

[51]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[52]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[53]  B. Tomas Johansson,et al.  A method of fundamental solutions for transient heat conduction in layered materials , 2009 .

[54]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[55]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[56]  W. S. Hall,et al.  Boundary Element Method , 2006 .

[57]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[58]  Naresh K. Sinha,et al.  Modeling and identification of dynamic systems , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[59]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[60]  A. Nowak,et al.  Inverse thermal problems , 1995 .

[61]  Helcio R. B. Orlande,et al.  Bayesian Estimation of Temperature-Dependent Thermophysical Properties and Transient Boundary Heat Flux , 2010 .

[62]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[63]  E. Somersalo,et al.  Nonstationary inverse problems and state estimation , 1999 .

[64]  Arto Voutilainen,et al.  A NON-HOMOGENEOUS REGULARIZATION METHOD FOR THE ESTIMATION OF NARROW AEROSOL SIZE DISTRIBUTIONS , 2000 .

[65]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[66]  Gene H. Golub,et al.  Matrix computations , 1983 .

[67]  William Rundell,et al.  A Second Degree Method for Nonlinear Inverse Problems , 1999, SIAM J. Numer. Anal..

[68]  M. J. Wheeler Heat and Mass Transfer , 1968, Nature.

[69]  J. Kaipio,et al.  Approximation errors in nonstationary inverse problems , 2007 .

[70]  Arto Voutilainen,et al.  Optimal current patterns in dynamical electrical impedance tomography imaging , 2007 .

[71]  A. G. Yagola,et al.  The method of extending compacts and a posteriori error estimates for nonlinear ill-posed problems , 2004 .

[72]  Nicholas Zabaras,et al.  Inverse Problems in Heat Transfer , 2009 .

[73]  Chakravarthy Balaji,et al.  Estimation of parameters in multi-mode heat transfer problems using Bayesian inference : Effect of noise and a priori , 2008 .

[74]  Geoff K. Nicholls,et al.  Bayesian image analysis with Markov chain Monte Carlo and coloured continuum triangulation models , 1998 .

[75]  George S. Dulikravich,et al.  Approximation of the likelihood function in the Bayesian technique for the solution of inverse problems , 2008 .

[76]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[77]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[78]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[79]  Daniil Svyatskiy,et al.  Multilevel approximations in sample-based inversion from the Dirichlet-to-Neumann map , 2008 .

[80]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[81]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[82]  Colin Fox,et al.  Recent advances in inferential solutions to inverse problems , 2008 .

[83]  Colin Fox,et al.  Efficient solution of boundary-value problems for image reconstruction via sampling , 2000, J. Electronic Imaging.

[84]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[86]  Jari P. Kaipio,et al.  Electrical impedance tomography with basis constraints , 1997 .

[87]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[88]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[89]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[90]  P. R. Nelson The algebra of random variables , 1979 .

[91]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[92]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[93]  Jari P. Kaipio,et al.  Aristotelian prior boundary conditions , 2006 .

[94]  Tiangang Cui,et al.  Using Parallel MCMC Sampling to Calibrate a Computer Model of a Geothermal Reservoir , 2011 .

[95]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[96]  M. Defrise,et al.  Image reconstruction. , 2006, Physics in medicine and biology.

[97]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[98]  Helcio R. B. Orlande,et al.  WITHDRAWN: Reconstruction of thermal conductivity and heat capacity using a tomographic approach , 2008 .

[99]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[100]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[101]  Chein-Shan Liu,et al.  Identification of temperature‐dependent thermophysical properties in a partial differential equation subject to extra final measurement data , 2007 .

[102]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[103]  J. Berger The case for objective Bayesian analysis , 2006 .

[104]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[105]  O. Alifanov Inverse heat transfer problems , 1994 .

[106]  Reem T. Al-Khairy,et al.  Analytical Solution of the Hyperbolic Heat Conduction Equation for Moving Semi-Infinite Medium under the Effect of Time-Dependent Laser Heat Source , 2009, J. Appl. Math..

[107]  Simon R. Arridge,et al.  RECOVERY OF REGION BOUNDARIES OF PIECEWISE CONSTANT COEFFICIENTS OF AN ELLIPTIC PDE FROM BOUNDARY DATA , 1999 .

[108]  R. Schwarzenberger,et al.  The finite element method : a first approach , 1981 .

[109]  Helcio R. B. Orlande,et al.  Reconstruction of thermal conductivity and heat capacity using a tomographic approach , 2007 .

[110]  Jari P. Kaipio,et al.  Model reduction in state identification problems with an application to determination of thermal parameters , 2009 .

[111]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[112]  Erkki Somersalo,et al.  A modelling error approach for the estimation of optical absorption in the presence of anisotropies. , 2004, Physics in medicine and biology.

[113]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[114]  Jari P. Kaipio,et al.  Posterior covariance related optimal current patterns in electrical impedance tomography , 2004 .

[115]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[116]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[117]  Stefan Finsterle,et al.  Approximation errors and truncation of computational domains with application to geophysical tomography , 2007 .

[118]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[119]  R. Shumway Applied Statistical Time Series Analysis , 1988 .

[120]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[121]  Guillaume Stawinski,et al.  Reversible jump Markov chain Monte Carlo for Bayesian deconvolution of point sources , 1998, Optics & Photonics.

[122]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[123]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[124]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[125]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[126]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.

[127]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[128]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[129]  Geoff K. Nicholls,et al.  Sampling Conductivity Images via MCMC , 2007 .

[130]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[131]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[132]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[133]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[134]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[135]  E Somersalo,et al.  Statistical inversion for medical x-ray tomography with few radiographs: II. Application to dental radiology. , 2003, Physics in medicine and biology.

[136]  Eugene Isaacson,et al.  Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell) , 1989, SIAM Rev..

[137]  F. David,et al.  Parameter Estimation in Engineering and Science , 1977 .

[138]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[139]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[140]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[141]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[142]  Geoff K. Nicholls,et al.  Prior modeling and posterior sampling in impedance imaging , 1998, Optics & Photonics.

[143]  Liang Yan,et al.  A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems , 2009, J. Comput. Appl. Math..

[144]  Robert E Weiss,et al.  Bayesian methods for data analysis. , 2010, American journal of ophthalmology.

[145]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[146]  Kenneth M. Hanson,et al.  Uncertainty assessment for reconstructions based on deformable geometry , 1997, Int. J. Imaging Syst. Technol..

[147]  David Higdon,et al.  A Primer on Space-Time Modeling from a Bayesian Perspective , 2006 .

[148]  Ashley F. Emery,et al.  Using Bayesian inference for parameter estimation when the system response and experimental conditions are measured with error and some variables are considered as nuisance variables , 2006 .

[149]  S. Langdon A boundary integral equation method for the heat equation , 2000 .

[150]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[151]  Martin B. Hansen,et al.  Bayesian inversion of geoelectrical resistivity data , 2003 .

[152]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[153]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .