Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy.

We present a significant sensitivity improvement of interferometric multiplex coherent anti-Stokes Raman scattering (CARS) by optimizing the power, bandwidth and phase of the pump, Stokes, and probe pulses independently. Fourier transform spectral interferometry (FTSI) is used to retrieve the entire complex quantity of the CARS spectrum by utilizing the non-resonant background as a local oscillator. Background-free spontaneous Raman-like vibrational spectra can be measured over the 500-1400 cm(-1) range with 20 cm(-1) spectral resolution within a tens of microseconds time scale. Chemically selective microscopy of a multicomponent polymer film is performed to demonstrate the feasibility of its microscopy application. A systematic analysis of the signal recovery method and several technical issues are discussed.