Some hypothesis tests based on random projection

Two new non-parametric tests are proposed based on continuous one-dimensional random projections. The first one addresses central symmetry and the second addresses independence. These tests are implemented for finite and infinite dimensional (functional) data sets. Both tests are distribution-free and universally consistent. Additionally, different techniques are proposed to improve the power of the tests. Promising results have been obtained by comparing the new tests with existing ones using simulation study. Real data in Banach spaces have been used to develop an application.

[1]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[2]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[3]  Pranab Kumar Sen,et al.  On Kolmogorov-Smirnov-type tests for symmetry , 1973 .

[4]  S. Rachev,et al.  Testing Multivariate Symmetry , 1995 .

[5]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[6]  Ricardo Fraiman,et al.  On depth measures and dual statistics. A methodology for dealing with general data , 2009, J. Multivar. Anal..

[7]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[8]  John H. J. Einmahl,et al.  Testing for central symmetry , 2016 .

[9]  Christian Genest,et al.  Asymptotic local efficiency of Cramér–von Mises tests for multivariate independence , 2005, 0708.0485.

[10]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[11]  R. Serfling Multivariate Symmetry and Asymmetry , 2006 .

[12]  Lajos Takács,et al.  Combinatorial Methods in the Theory of Stochastic Processes , 1967 .

[13]  J. Shohat,et al.  The problem of moments , 1943 .

[14]  Lixing Zhu,et al.  Permutation Tests for Reflected Symmetry , 1998 .

[15]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[16]  D. Paindaveine,et al.  Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks , 2002 .

[17]  William E. Strawderman,et al.  Generalizations of James-Stein Estimators Under Spherical Symmetry , 1991 .

[18]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[19]  J. H. Schuenemeyer,et al.  A Modified Kolmogorov-Smirnov Test Sensitive to Tail Alternatives , 1983 .

[20]  Sigeo Aki,et al.  On nonparametric tests for symmetry inRm , 1993 .

[21]  J. A. Cuesta-Albertos,et al.  Random projections and goodness-of-fit tests in infinite-dimensional spaces , 2006 .

[22]  A. Cichocki,et al.  Diagnosis of Alzheimer's disease from EEG signals: where are we standing? , 2010 .

[23]  Pranab Kumar Sen,et al.  On the Theory of Rank Order Tests for Location in the Multivariate One Sample Problem , 1967 .

[24]  Gábor J. Székely,et al.  The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..

[25]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[26]  J. A. Cuesta-Albertos,et al.  A Sharp Form of the Cramér–Wold Theorem , 2007 .

[27]  H. Begleiter,et al.  Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.

[28]  W. J. Padgett Laws of Large Numbers for Normed Linear Spaces and Certain Frechet Spaces , 1973 .

[29]  David K. Blough,et al.  Multivariate symmetry via projection pursuit , 1989 .

[30]  S. S. Wilks On the Independence of k Sets of Normally Distributed Statistical Variables , 1935 .

[31]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[32]  P S Albert,et al.  Limitations of the case-only design for identifying gene-environment interactions. , 2001, American journal of epidemiology.

[33]  Christophe Ley,et al.  Univariate and multivariate symmetry: statistical inference and distributional aspects , 2010 .

[34]  Christophe Ley,et al.  Depth-based runs tests for bivariate central symmetry , 2012 .

[35]  H. Wold,et al.  Some Theorems on Distribution Functions , 1936 .