Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases

[1]  S. Baghdiguian,et al.  Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins , 2017, Neurochemistry International.

[2]  A. Hewitt,et al.  Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases☆ , 2017, Pharmacology & therapeutics.

[3]  F. Di Virgilio,et al.  Use of luciferase probes to measure ATP in living cells and animals , 2017, Nature Protocols.

[4]  J. Loscalzo,et al.  Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism , 2017, Nature Methods.

[5]  B. Su,et al.  Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases , 2017, Antioxidants.

[6]  Christian M. Metallo,et al.  Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death , 2017, The Journal of cell biology.

[7]  M. Brand,et al.  Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements , 2017, The Journal of Biological Chemistry.

[8]  M. Duchen,et al.  Assessment of Cellular Redox State Using NAD(P)H Fluorescence Intensity and Lifetime. , 2017, Bio-protocol.

[9]  A. Kakizuka,et al.  BTeam, a Novel BRET-based Biosensor for the Accurate Quantification of ATP Concentration within Living Cells , 2016, Scientific Reports.

[10]  Matthew J. Daniels,et al.  Five colour variants of bright luminescent protein for real-time multicolour bioimaging , 2016, Nature Communications.

[11]  Young Hye Kim,et al.  3D culture models of Alzheimer’s disease: a road map to a “cure-in-a-dish” , 2016, Molecular Neurodegeneration.

[12]  M. Duchen,et al.  Investigating mitochondrial redox state using NADH and NADPH autofluorescence , 2016, Free radical biology & medicine.

[13]  M. Brand Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. , 2016, Free radical biology & medicine.

[14]  V. Belousov,et al.  Genetically encoded probes for NAD+/NADH monitoring. , 2016, Free radical biology & medicine.

[15]  G. Bonvento,et al.  Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes , 2016, Proceedings of the National Academy of Sciences.

[16]  Jason M. Conley,et al.  Imaging Adenosine Triphosphate (ATP) , 2016, The Biological Bulletin.

[17]  G. Hajnóczky,et al.  Subcellular ROS imaging methods: Relevance for the study of calcium signaling. , 2016, Cell calcium.

[18]  Katharina Dietrich,et al.  Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology. , 2016, Antioxidants & redox signaling.

[19]  Melissa L. Stewart,et al.  Biosensor reveals multiple sources for mitochondrial NAD+ , 2016, Science.

[20]  Tullio Pozzan,et al.  Enjoy the Trip: Calcium in Mitochondria Back and Forth. , 2016, Annual review of biochemistry.

[21]  T. Dick,et al.  Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. , 2016, Nature chemical biology.

[22]  P. Pinton,et al.  Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques , 2016, Nature Protocols.

[23]  M. Brand,et al.  Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements , 2016, PloS one.

[24]  A. A. Armoundas,et al.  Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters , 2016, Scientific Reports.

[25]  M. Mattson,et al.  Nuclear DNA damage signalling to mitochondria in ageing , 2016, Nature Reviews Molecular Cell Biology.

[26]  Edilene S. Siqueira-Santos,et al.  Underestimation of the Maximal Capacity of the Mitochondrial Electron Transport System in Oligomycin-Treated Cells , 2016, PloS one.

[27]  L. Partridge,et al.  Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry , 2016, Cell metabolism.

[28]  Sandeep Chakraborty,et al.  Quantification of the Metabolic State in Cell-Model of Parkinson’s Disease by Fluorescence Lifetime Imaging Microscopy , 2016, Scientific Reports.

[29]  T. Kitamoto,et al.  In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin. , 2016, Journal of visualized experiments : JoVE.

[30]  B. Roelofs,et al.  Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. , 2015, Free radical biology & medicine.

[31]  M. Duchen,et al.  The regulation of neuronal mitochondrial metabolism by calcium , 2015, The Journal of physiology.

[32]  F. Cheng,et al.  SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. , 2015, Cell metabolism.

[33]  G. Fiskum,et al.  Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation , 2015, Journal of Bioenergetics and Biomembranes.

[34]  J. Prehn,et al.  The metabolic response to excitotoxicity – lessons from single-cell imaging , 2015, Journal of Bioenergetics and Biomembranes.

[35]  J. Esteban,et al.  Mitochondrial ATP-Mg/Pi Carrier SCaMC-3/Slc25a23 Counteracts PARP-1-Dependent Fall in Mitochondrial ATP Caused by Excitotoxic Insults in Neurons , 2015, The Journal of Neuroscience.

[36]  M. Brand,et al.  The contributions of respiration and glycolysis to extracellular acid production. , 2015, Biochimica et biophysica acta.

[37]  B. Dickinson,et al.  Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells , 2015, Proceedings of the National Academy of Sciences.

[38]  Hiroyuki Noji,et al.  Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging , 2014, Scientific Reports.

[39]  Robert E. Campbell,et al.  Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum , 2014, The Biochemical journal.

[40]  R. Swerdlow,et al.  The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. , 2014, Biochimica et biophysica acta.

[41]  H. Düssmann,et al.  Single-Cell Imaging of Bioenergetic Responses to Neuronal Excitotoxicity and Oxygen and Glucose Deprivation , 2014, The Journal of Neuroscience.

[42]  Sebastian Ceballo,et al.  Single-cell imaging tools for brain energy metabolism: a review , 2014, Neurophotonics.

[43]  Masamichi Ohkura,et al.  Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA , 2014, Nature Communications.

[44]  Degui Zhi,et al.  The Bioenergetic Health Index: a new concept in mitochondrial translational research , 2014, Clinical science.

[45]  Ajit S. Divakaruni,et al.  Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clark‐Type Oxygen Electrode , 2014, Current protocols in toxicology.

[46]  Adam M. Feist,et al.  Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. , 2014, Molecular cell.

[47]  Oliver Griesbeck,et al.  Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo , 2014, Nature Network Boston.

[48]  G. Enikolopov,et al.  Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments. , 2014, Biochimica et biophysica acta.

[49]  A. M. van der Bliek,et al.  Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy , 2014, eLife.

[50]  B. Hill,et al.  Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis , 2014, Nature Protocols.

[51]  E. Cadenas,et al.  Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. , 2014, Antioxidants & redox signaling.

[52]  M. Kano,et al.  A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo , 2014, The European journal of neuroscience.

[53]  Giancarlo Ferrigno,et al.  The Influence of Neuronal Density and Maturation on Network Activity of Hippocampal Cell Cultures: A Methodological Study , 2013, PloS one.

[54]  R. Traystman,et al.  Sex stratified neuronal cultures to study ischemic cell death pathways. , 2013, Journal of visualized experiments : JoVE.

[55]  S. Lipton,et al.  Isogenic Human iPSC Parkinson’s Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription , 2013, Cell.

[56]  Mojca Bencina,et al.  Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors , 2013, Sensors.

[57]  John R. Yates,et al.  Isogenic Human iPSC Parkinson’s Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription , 2013, Cell.

[58]  T. Cotter,et al.  Recent advances in reactive oxygen species measurement in biological systems. , 2013, Trends in biochemical sciences.

[59]  P. Pinton,et al.  Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes , 2013, Nature Protocols.

[60]  G. Yellen,et al.  Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio , 2013, Nature Communications.

[61]  Y. Yen,et al.  Measuring mitochondrial metabolism in rat brain in vivo using MR Spectroscopy of hyperpolarized [2‐13C]pyruvate , 2013, NMR in biomedicine.

[62]  Ken Nakamura,et al.  Energy Failure , 2013, Annals of neurology.

[63]  T. Saheki,et al.  Calcium-Regulation of Mitochondrial Respiration Maintains ATP Homeostasis and Requires ARALAR/AGC1-Malate Aspartate Shuttle in Intact Cortical Neurons , 2013, The Journal of Neuroscience.

[64]  H. Bading,et al.  Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals , 2013, Nature Communications.

[65]  Christopher J. Chang,et al.  Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells , 2013, Nature Protocols.

[66]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[67]  Sohila Zadran,et al.  Enhanced-acceptor fluorescence-based single cell ATP biosensor monitors ATP in heterogeneous cancer populations in real time , 2013, Biotechnology Letters.

[68]  L. Khiroug,et al.  Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures , 2013, Front. Mol. Neurosci..

[69]  D. Linseman,et al.  Mitochondrial Glutathione Transport Is a Key Determinant of Neuronal Susceptibility to Oxidative and Nitrosative Stress* , 2013, The Journal of Biological Chemistry.

[70]  Y. Yoon,et al.  Mitochondrial morphology-emerging role in bioenergetics. , 2012, Free radical biology & medicine.

[71]  M. Horan,et al.  Review: quantifying mitochondrial dysfunction in complex diseases of aging. , 2012, The journals of gerontology. Series A, Biological sciences and medical sciences.

[72]  M. Beal,et al.  Mitochondrial Dysfunction in Neurodegenerative Diseases , 2012, Journal of Pharmacology and Experimental Therapeutics.

[73]  N. Hempel,et al.  Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and Nanotube Applications , 2012, International journal of molecular sciences.

[74]  C. Chinopoulos,et al.  Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium‐induced de‐ and hyperpolarization of neuronal mitochondria , 2012, The Journal of physiology.

[75]  N. Demaurex,et al.  The renaissance of mitochondrial pH , 2012, The Journal of general physiology.

[76]  V. Pertegato,et al.  Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells , 2012, Nature Protocols.

[77]  R. Tsien,et al.  pHTomato: A genetically-encoded indicator that enables multiplex interrogation of synaptic activity , 2012, Nature Neuroscience.

[78]  Terina N. Martinez,et al.  Toxin models of mitochondrial dysfunction in Parkinson's disease. , 2012, Antioxidants & redox signaling.

[79]  B. Polster,et al.  Investigation of Mitochondrial Dysfunction by Sequential Microplate-Based Respiration Measurements from Intact and Permeabilized Neurons , 2012, PloS one.

[80]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[81]  G. Ronnett,et al.  Physiological oxygen level is critical for modeling neuronal metabolism in vitro , 2012, Journal of neuroscience research.

[82]  Xiongwei Zhu,et al.  LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. , 2012, Human molecular genetics.

[83]  J. Ross,et al.  Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. , 2011, Journal of visualized experiments : JoVE.

[84]  A. Landar,et al.  Assessing bioenergetic function in response to oxidative stress by metabolic profiling. , 2011, Free radical biology & medicine.

[85]  J. Albeck,et al.  Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. , 2011, Cell metabolism.

[86]  J. Loscalzo,et al.  Genetically encoded fluorescent sensors for intracellular NADH detection. , 2011, Cell metabolism.

[87]  Xianhua Wang,et al.  Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2. , 2011, Acta biochimica et biophysica Sinica.

[88]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[89]  Nobuhiro Ohta,et al.  Intracellular pH sensing using autofluorescence lifetime microscopy. , 2011, The journal of physical chemistry. B.

[90]  B. Chazotte,et al.  Labeling mitochondria with MitoTracker dyes. , 2011, Cold Spring Harbor protocols.

[91]  D. Bourdette,et al.  Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress , 2011, The European journal of neuroscience.

[92]  E. Schon,et al.  Mitochondria: The Next (Neurode)Generation , 2011, Neuron.

[93]  Mathew Tantama,et al.  S 1 Imaging Intracellular pH in Live Cells with a Genetically-Encoded Red Fluorescent Protein Sensor , 2011 .

[94]  J. C. Bakowska,et al.  Determination of Mitochondrial Membrane Potential and Reactive Oxygen Species in Live Rat Cortical Neurons , 2011, Journal of visualized experiments : JoVE.

[95]  Takeharu Nagai,et al.  Ca²⁺ regulation of mitochondrial ATP synthesis visualized at the single cell level. , 2011, ACS chemical biology.

[96]  M. Brand,et al.  Assessing mitochondrial dysfunction in cells , 2011, The Biochemical journal.

[97]  Linda Partridge,et al.  Unraveling the biological roles of reactive oxygen species. , 2011, Cell metabolism.

[98]  S. Perry,et al.  Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. , 2011, BioTechniques.

[99]  N. Demaurex,et al.  Dynamic Regulation of the Mitochondrial Proton Gradient during Cytosolic Calcium Elevations* , 2011, The Journal of Biological Chemistry.

[100]  Paul T. Schumacker,et al.  Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1 , 2010, Nature.

[101]  N. Pivovarova,et al.  Calcium‐dependent mitochondrial function and dysfunction in neurons , 2010, The FEBS journal.

[102]  C. Chinopoulos,et al.  Forward operation of adenine nucleotide translocase during F0F1‐ATPase reversal: critical role of matrix substrate‐level phosphorylation , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[103]  Ajit S. Divakaruni,et al.  Mitochondrial proton and electron leaks. , 2010, Essays in biochemistry.

[104]  R. Dahm,et al.  Transfection Techniques for Neuronal Cells , 2010, The Journal of Neuroscience.

[105]  B. Kalyanaraman,et al.  Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. , 2010, Free radical biology & medicine.

[106]  C. Shuttleworth,et al.  Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation , 2010, Neurochemistry International.

[107]  Bryan C Dickinson,et al.  Mitochondrial-targeted fluorescent probes for reactive oxygen species. , 2010, Current opinion in chemical biology.

[108]  M. Sikorska,et al.  Differentiation of mouse Neuro 2A cells into dopamine neurons , 2010, Journal of Neuroscience Methods.

[109]  Xiuping Chen,et al.  2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy , 2010, Free radical research.

[110]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[111]  Xiaomin Song,et al.  Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice , 2009, Proceedings of the National Academy of Sciences.

[112]  T. Pozzan,et al.  Measurements of mitochondrial calcium in vivo. , 2009, Biochimica et biophysica acta.

[113]  F. Fontanesi,et al.  Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Polarography and Spectrophotometric Enzyme Assays , 2009, Current protocols in human genetics.

[114]  Takeharu Nagai,et al.  Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators , 2009, Proceedings of the National Academy of Sciences.

[115]  R. Swanson,et al.  NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation , 2009, Nature Neuroscience.

[116]  S. Moncada,et al.  The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1 , 2009, Nature Cell Biology.

[117]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[118]  Jim Berg,et al.  A genetically encoded fluorescent reporter of ATP/ADP ratio , 2008, Nature Methods.

[119]  Ilya Bezprozvanny,et al.  Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease , 2008, Trends in Neurosciences.

[120]  J. Götz,et al.  Animal models of Alzheimer's disease and frontotemporal dementia , 2008, Nature Reviews Neuroscience.

[121]  R. Rizzuto,et al.  Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. , 2008, Cell calcium.

[122]  Andreas J Meyer,et al.  Real-time imaging of the intracellular glutathione redox potential , 2008, Nature Methods.

[123]  Michael S Janes,et al.  The selective detection of mitochondrial superoxide by live cell imaging , 2008, Nature Protocols.

[124]  G. Ronnett,et al.  Physiological glucose is critical for optimized neuronal viability and AMPK responsiveness in vitro , 2008, Journal of Neuroscience Methods.

[125]  Martin A. Smith,et al.  Preparation of dissociated mouse cortical neuron cultures. , 2007, Journal of visualized experiments : JoVE.

[126]  H. Düssmann,et al.  Mitochondrial and Plasma Membrane Potential of Cultured Cerebellar Neurons during Glutamate-Induced Necrosis, Apoptosis, and Tolerance , 2007, The Journal of Neuroscience.

[127]  D. Sulzer,et al.  Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease , 2007, Trends in Neurosciences.

[128]  George Perry,et al.  Alzheimer disease, the two-hit hypothesis: an update. , 2007, Biochimica et biophysica acta.

[129]  Richard Kovács,et al.  Mitochondria and neuronal activity. , 2007, American journal of physiology. Cell physiology.

[130]  M. Duchen,et al.  Three Distinct Mechanisms Generate Oxygen Free Radicals in Neurons and Contribute to Cell Death during Anoxia and Reoxygenation , 2007, The Journal of Neuroscience.

[131]  C. Chinopoulos,et al.  Bioenergetics and the formation of mitochondrial reactive oxygen species. , 2006, Trends in pharmacological sciences.

[132]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[133]  Jean-Claude Martinou,et al.  Nitric oxide‐induced mitochondrial fission is regulated by dynamin‐related GTPases in neurons , 2006, The EMBO journal.

[134]  D. Nicholls Simultaneous Monitoring of Ionophore- and Inhibitor-mediated Plasma and Mitochondrial Membrane Potential Changes in Cultured Neurons* , 2006, Journal of Biological Chemistry.

[135]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[136]  S. Lukyanov,et al.  Genetically encoded fluorescent indicator for intracellular hydrogen peroxide , 2006, Nature Methods.

[137]  T. Saheki,et al.  Essential Role of Aralar in the Transduction of Small Ca+ Signals to Neuronal Mitochondria* , 2006, Journal of Biological Chemistry.

[138]  S. Schiffmann,et al.  Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain , 2005, Neuropharmacology.

[139]  F. H. van der Westhuizen,et al.  Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth. , 2005, American journal of physiology. Cell physiology.

[140]  H. Kasai,et al.  Rapid Ca2+-dependent increase in oxygen consumption by mitochondria in single mammalian central neurons. , 2005, Cell calcium.

[141]  E. Feldman,et al.  Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[142]  P. Mitchell,et al.  Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. , 2005, European journal of biochemistry.

[143]  P. Pinton,et al.  pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. , 2005, Biochemical and biophysical research communications.

[144]  Á. Almeida,et al.  Increased mitochondrial respiration maintains the mitochondrial membrane potential and promotes survival of cerebellar neurons in an endogenous model of glutamate receptor activation , 2005, Journal of neurochemistry.

[145]  R. Duvoisin,et al.  High-level expression of rabbit 15-lipoxygenase induces collapse of the mitochondrial pH gradient in cell culture. , 2004, Biochemistry.

[146]  D. Nicholls,et al.  In Situ Respiration and Bioenergetic Status of Mitochondria in Primary Cerebellar Granule Neuronal Cultures Exposed Continuously to Glutamate* , 2004, Journal of Biological Chemistry.

[147]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[148]  W. Webb,et al.  Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis , 2004, Science.

[149]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[150]  Tullio Pozzan,et al.  Mitochondrial pH Monitored by a New Engineered Green Fluorescent Protein Mutant* , 2004, Journal of Biological Chemistry.

[151]  C. Reggiani,et al.  Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency , 2003, Nature Genetics.

[152]  Rüdiger Rudolf,et al.  Looking forward to seeing calcium , 2003, Nature Reviews Molecular Cell Biology.

[153]  L. Tretter,et al.  Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals , 2002, Journal of neurochemistry.

[154]  Watt W Webb,et al.  Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. , 2002, Biophysical journal.

[155]  J. Winther,et al.  Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein , 2001, The EMBO journal.

[156]  Fred S. Wouters,et al.  Imaging FRET between spectrally similar GFP molecules in single cells , 2001, Nature Biotechnology.

[157]  P. Bernardi,et al.  A mitochondrial perspective on cell death. , 2001, Trends in biochemical sciences.

[158]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[159]  Y. Ho,et al.  Mitochondrial superoxide production in kainate-induced hippocampal damage , 2000, Neuroscience.

[160]  Z. Xu,et al.  Measuring the quantity and activity of mitochondrial electron transport chain complexes in tissues of central nervous system using blue native polyacrylamide gel electrophoresis. , 2000, Analytical biochemistry.

[161]  B. Frenguelli,et al.  Mitochondrial Membrane Potential and Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 2000, The Journal of Neuroscience.

[162]  M. Mattson,et al.  Participation of Par-4 in the Degeneration of Striatal Neurons Induced by Metabolic Compromise with 3-Nitropropionic Acid , 2000, Experimental Neurology.

[163]  Françoise Condé,et al.  Replicating Huntington's disease phenotype in experimental animals , 1999, Progress in Neurobiology.

[164]  D. Flaherty,et al.  Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. , 1999, Free radical biology & medicine.

[165]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[167]  V. Bindokas,et al.  Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[168]  Roger Y. Tsien,et al.  Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo , 1996, Current Biology.

[169]  M. Goldberg,et al.  Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[170]  B. Siesjö,et al.  Coupling Among Energy Failure, Loss of Ion Homeostasis, and Phospholipase A2 and C Activation During Ischemia , 1993, Journal of neurochemistry.

[171]  Tullio Pozzan,et al.  Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin , 1992, Nature.

[172]  L. Greene,et al.  Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[173]  B. Chance KINETICS OF ENZYME REACTIONS WITHIN SINGLE CELLS , 1962, Annals of the New York Academy of Sciences.

[174]  C. McMurray,et al.  The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington’s disease , 2017, Mechanisms of Ageing and Development.

[175]  M. Mattson,et al.  Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. , 2017, Free radical biology & medicine.

[176]  Y. Usachev,et al.  Techniques for Simultaneous Mitochondrial and Cytosolic Ca 2+ Imaging in Neurons , 2017 .

[177]  S. Strack,et al.  Techniques to Investigate Mitochondrial Function in Neurons , 2017, Neuromethods.

[178]  S. Kügler,et al.  Live Imaging of Mitochondrial ROS Production and Dynamic Redox Balance in Neurons , 2017 .

[179]  Liang Zhang,et al.  Respirometry in neurons , 2017 .

[180]  D. Papkovsky,et al.  Comparison of the three optical platforms for measurement of cellular respiration. , 2015, Analytical biochemistry.

[181]  C. Chinopoulos,et al.  Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption. , 2014, Methods in enzymology.

[182]  D. Nicholls,et al.  Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. , 2014, Methods in enzymology.

[183]  Alexander V. Zhdanov,et al.  Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles , 2014, Cellular and Molecular Life Sciences.

[184]  T. Pozzan,et al.  Spying on organelle Ca2+ in living cells: the mitochondrial point of view , 2014, Journal of Endocrinological Investigation.

[185]  W. Frommer,et al.  Mitochondrial biosensors. , 2014, The international journal of biochemistry & cell biology.

[186]  Ajit S. Divakaruni,et al.  Analysis and interpretation of microplate-based oxygen consumption and pH data. , 2014, Methods in enzymology.

[187]  Antonio Carlos Pinheiro de Oliveira,et al.  Studying neurodegenerative diseases in culture models. , 2013, Revista brasileira de psiquiatria.

[188]  Mathew Tantama,et al.  Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. , 2012, Progress in brain research.

[189]  B. Hoffer,et al.  Transgenic animal models of neurodegeneration based on human genetic studies , 2010, Journal of Neural Transmission.

[190]  L. Minichiello,et al.  The preparation of primary cortical neuron cultures and a practical application using immunofluorescent cytochemistry. , 2010, Methods in molecular biology.

[191]  Dmitri B Papkovsky,et al.  Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes , 2007, Nature Protocols.

[192]  H. Reichmann,et al.  Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. , 2007, Journal of neural transmission. Supplementum.

[193]  W. Gerwick,et al.  On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. , 2005, Critical reviews in neurobiology.

[194]  早川 泰之 Rapid Ca[2+]-dependent increase in oxygen consumption by mitochondria in single mammalian central neurons , 2005 .

[195]  A. Miyawaki,et al.  Circularly permuted green fluorescent proteins engineered to sense Ca2+ , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[196]  S. Budd,et al.  Mitochondria and neuronal survival. , 2000, Physiological reviews.

[197]  R C Scaduto,et al.  Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. , 1999, Biophysical journal.

[198]  Xiaomin Song,et al.  Amyloid- (cid:1) and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice , 2009 .

[199]  N. Demaurex,et al.  The renaissance of mitochondrial pH , 2012, The Journal of general physiology.