Elliptic and Hyperelliptic Curves Over Supersimple Fields

It is proved that if $F$ is an infinite field with characteristic different from $2$ , whose theory is supersimple, and $C$ is an elliptic or hyperelliptic curve over $F$ with generic ‘modulus’, then $C$ has a generic $F$ -rational point. The notion of generity here is in the sense of the supersimple field $F$ .

[1]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[2]  G. Cherlin ℵ 1 -categorical fields , 1976 .

[3]  Anand Pillay,et al.  Model theory of algebraically closed fields , 1998 .

[4]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[5]  The Model Theory of Algebraically Closed Fields , 2000 .

[6]  Bruno Poizat,et al.  Corps et chirurgie , 1995, Journal of Symbolic Logic.

[7]  I. Shafarevich Basic algebraic geometry , 1974 .

[8]  Bruno Poizat,et al.  Bodies and surgery , 1995 .

[9]  Rick Miranda,et al.  Algebraic Curves and Riemann Surfaces , 1995 .

[10]  Joe Harris,et al.  Moduli of curves , 1998 .

[11]  Anand Pillay,et al.  From Stability to Simplicity , 1998, Bulletin of Symbolic Logic.

[12]  Saharon Shelah,et al.  Superstable fields and groups , 1980 .

[13]  F. Wagnerz,et al.  Supersimple Fields and Division Rings , 2000 .

[14]  Anand Pillay,et al.  Simple Theories , 1997, Ann. Pure Appl. Log..

[15]  Anand Pillay,et al.  Definability and definable groups in simple theories , 1998, Journal of Symbolic Logic.