Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data.

Abstract Spatially explicit predictions of fuel moisture content are crucial for quantifying fire danger indices and as inputs to fire behaviour models. Remotely sensed predictions of fuel moisture have typically focused on live fuels; but regional estimates of dead fuel moisture have been less common. Here we develop and test the spatial application of a recently developed dead fuel moisture model, which is based on the exponential decline of fine fuel moisture with increasing vapour pressure deficit (D). We first compare the performance of two existing approaches to predict D from satellite observations. We then use remotely sensed D, as well as D estimated from gridded daily weather observations, to predict dead fuel moisture. We calibrate and test the model at a woodland site in South East Australia, and then test the model at a range of sites in South East Australia and Southern California that vary in vegetation type, mean annual precipitation (129–1404 mm year− 1) and leaf area index (0.1–5.7). We found that D modelled from remotely sensed land surface temperature performed slightly better than a model which also included total precipitable water (MAE

[1]  W. L. Smith,et al.  Note on the Relationship Between Total Precipitable Water and Surface Dew Point , 1966 .

[2]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[3]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[4]  R. Bradstock,et al.  A semi-mechanistic model for predicting the moisture content of fine litter , 2015 .

[5]  Jack D. Cohen,et al.  The 1978 National Fire-Danger Rating System: technical documentation , 1984 .

[6]  F. M. Danson,et al.  Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level , 2004 .

[7]  R. Rothermel,et al.  How to Predict the Spread and Intensity of Forest and Range Fires , 2017 .

[8]  Neil R. Viney,et al.  A Review of Fine Fuel Moisture Modelling , 1991 .

[9]  Robert J. Hijmans,et al.  Geographic Data Analysis and Modeling , 2015 .

[10]  S. Running,et al.  Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data , 2008 .

[11]  Dar A. Roberts,et al.  Mapping live fuel moisture with MODIS data: A multiple regression approach , 2008 .

[12]  Emilio Chuvieco,et al.  Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula , 2011 .

[13]  Y. Viswanadham The Relationship between Total Precipitable Water and Surface Dew Point , 1981 .

[14]  S. Matthews Dead fuel moisture research: 1991–2012 , 2014 .

[15]  W. Mccaw,et al.  Estimating fuel response time and predicting fuel moisture content from field data , 2001 .

[16]  S. Goetz Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site , 1997 .

[17]  Emilio Chuvieco,et al.  Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem , 2009 .

[18]  Stuart Matthews,et al.  Testing a process-based fine fuel moisture model in two forest types , 2007 .

[19]  Tingting Wu,et al.  Spatial interpolation of temperature in the United States using residual kriging , 2013 .

[20]  D. Riaño,et al.  Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .

[21]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications , 2002 .

[22]  Laurie A. Chisholm,et al.  Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems , 2011 .

[23]  John O. Carter,et al.  Using spatial interpolation to construct a comprehensive archive of Australian climate data , 2001, Environ. Model. Softw..

[24]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[25]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[26]  R. M. Nelson,et al.  A method for describing equilibrium moisture content of forest fuels , 1984 .

[27]  R. Granger Satellite-derived estimates of evapotranspiration in the Gediz basin , 2000 .

[28]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[29]  F. M. Danson,et al.  A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving t , 2013 .

[30]  Alexei Lyapustin,et al.  Observation of mountain lee waves with MODIS NIR column water vapor , 2014 .

[31]  G. M. Byram,et al.  A Drought Index for Forest Fire Control , 1968 .

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[33]  E. Catchpole,et al.  Estimating Fuel Moisture Response Times from Field Observations , 1991 .

[34]  Roger C. Bales,et al.  Evapotranspiration along an elevation gradient in California's Sierra Nevada , 2012 .

[35]  I. Sandholt,et al.  Dead fuel moisture estimation with MSG-SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content , 2010 .

[36]  Scott J. Goetz,et al.  Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: comparison with field observations , 1998 .

[37]  Stability, normalization and accuracy of MODIS‐derived estimates of live fuel moisture for southern California chaparral , 2007 .

[38]  Rasmus Fensholt,et al.  Estimation of diurnal air temperature using MSG SEVIRI data in West Africa , 2007 .

[39]  Laurie A. Chisholm,et al.  Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data , 2012 .

[40]  M. Roderick,et al.  Plant-water relations and the fibre saturation point. , 2005, The New phytologist.

[41]  Richard H. Waring,et al.  Ecological Remote Sensing at OTTER: Satellite Macroscale Observations , 1994 .

[42]  S. Goward,et al.  Estimation of air temperature from remotely sensed surface observations , 1997 .

[43]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[44]  Zhao-Liang Li,et al.  Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data , 2002 .

[45]  Kei Oyoshi,et al.  Hourly LST Monitoring with Japanese Geostationary Satellite MTSAT-1R over the Asia-Pacific Region , 2014 .