Tree-ring δ18Ocellulose variations in two Nothofagus species record large-scaleclimatic signals in the South American sector of the Southern Ocean

[1]  H. Linderholm,et al.  Summer temperature changes in Tierra del Fuego since AD 1765: atmospheric drivers and tree-ring reconstruction from the southernmost forests of the world , 2022, Climate Dynamics.

[2]  R. Villalba,et al.  Two Nothofagus Species in Southernmost South America Are Recording Divergent Climate Signals , 2022, Forests.

[3]  Qiufang Cai,et al.  Tree‐ring oxygen isotope recorded precipitation variations over the past two centuries in the northeast Chinese Loess Plateau , 2022, International Journal of Climatology.

[4]  Paul Berrisford,et al.  The ERA5 global reanalysis: Preliminary extension to 1950 , 2021, Quarterly Journal of the Royal Meteorological Society.

[5]  J. Thepaut,et al.  Supplementary material to "ERA5-Land: A state-of-the-art global reanalysis dataset for land applications" , 2021, Earth System Science Data.

[6]  Kyle R. Clem,et al.  The South Pacific Pressure Trend Dipole and the Southern Blob , 2021, Journal of Climate.

[7]  C. Soliani,et al.  Different drought-adaptive capacity of a native Patagonian tree species (Nothofagus pumilio) resulting from local adaptation , 2021, European Journal of Forest Research.

[8]  M. Wegmann,et al.  Large-scale climate signals of a European oxygen isotope network from tree rings , 2021 .

[9]  E. Liang,et al.  Unexpected climate variability inferred from a 380-year tree-ring earlywood oxygen isotope record in the Karakoram, Northern Pakistan , 2021, Climate Dynamics.

[10]  M. Braun,et al.  A tree-ring δ18O series from southernmost Fuego-Patagonia is recording flavors of the Antarctic Oscillation , 2020 .

[11]  A. Bräuning,et al.  501 Years of Spring Precipitation History for the Semi-Arid Northern Iran Derived from Tree-Ring δ18O Data , 2020 .

[12]  R. Holmes,et al.  Dendrochronological studies in Tierra del Fuego, Argentina , 2020 .

[13]  Á. González-Reyes,et al.  Impact of Extreme Weather Events on Aboveground Net Primary Productivity and Sheep Production in the Magellan Region, Southernmost Chilean Patagonia , 2020 .

[14]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[15]  N. Pumijumnong,et al.  A 338-year tree-ring oxygen isotope record from Thai teak captures the variations in the Asian summer monsoon system , 2020, Scientific Reports.

[16]  Robert M. Parinussa,et al.  Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors , 2020, Hydrology and Earth System Sciences.

[17]  G. Marshall,et al.  The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere , 2020, WIREs Climate Change.

[18]  R. Villalba,et al.  Contrasting Climates at Both Sides of the Andes in Argentina and Chile , 2019, Front. Environ. Sci..

[19]  G. Goldstein,et al.  Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. , 2019, Plant, cell & environment.

[20]  H. Linderholm,et al.  Assessing the dendroclimatic potential of Nothofagus betuloides (Magellan’s beech) forests in the southernmost Chilean Patagonia , 2019, Trees.

[21]  D. Sánchez-Gómez,et al.  Thinking in the sustainability of Nothofagus antarctica silvopastoral systems, how differ the responses of seedlings from different provenances to water shortage? , 2019, Agroforestry Systems.

[22]  D. McCarroll,et al.  Stable oxygen isotopes in Romanian oak tree rings record summer droughts and associated large-scale circulation patterns over Europe , 2018, Climate Dynamics.

[23]  G. Casassa,et al.  Snow Cover Change as a Climate Indicator in Brunswick Peninsula, Patagonia , 2018, Front. Earth Sci..

[24]  M. Grosjean,et al.  Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium , 2018, Climate Dynamics.

[25]  P. Skvarca,et al.  Imprints of Climate Signals in a 204 Year δ18O Tree-Ring Record of Nothofagus pumilio From Perito Moreno Glacier, Southern Patagonia (50°S) , 2018, Front. Earth Sci..

[26]  R. Garreaud Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016 , 2018 .

[27]  Álvaro González-Reyes,et al.  Variabilidad de la precipitación en la ciudad de Punta Arenas, Chile, desde principios del siglo XX , 2017 .

[28]  Amy E. Miller,et al.  Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska. , 2016, Ecological applications : a publication of the Ecological Society of America.

[29]  S. Brönnimann,et al.  Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale , 2016 .

[30]  R. Villalba,et al.  Are the oxygen isotopic compositions of Fitzroya cupressoides and Nothofagus pumilio cellulose promising proxies for climate reconstructions in northern Patagonia? , 2016 .

[31]  D. Dixon,et al.  The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate , 2016 .

[32]  V. Masson‐Delmotte,et al.  French summer droughts since 1326 CE: a reconstruction based on tree ring cellulose δ 18 O , 2015 .

[33]  J. Marion,et al.  A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees , 2015 .

[34]  R. Garreaud,et al.  Impact of the global warming hiatus on Andean temperature , 2015 .

[35]  R. Tognetti,et al.  Tree-Ring Stable Isotopes Reveal Twentieth-Century Increases in Water-Use Efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean Mountains , 2014, PloS one.

[36]  D. Qin,et al.  Tree‐ring δ18O evidence for the drought history of eastern Tianshan Mountains, northwest China since 1700 AD , 2014 .

[37]  Juan Pedro Ferrio,et al.  Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. , 2014, Tree physiology.

[38]  J. Turner,et al.  Evolution of the Southern Annular Mode during the past millennium , 2014 .

[39]  R. Healy,et al.  Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada , 2014, Climate Dynamics.

[40]  J. Turner,et al.  The Influence of the Amundsen–Bellingshausen Seas Low on the Climate of West Antarctica and Its Representation in Coupled Climate Model Simulations , 2013 .

[41]  Jorge Carrasco Decadal Changes in the Near-Surface Air Temperature in the Western Side of the Antarctic Peninsula , 2013 .

[42]  J. Turner,et al.  The Amundsen Sea low , 2013 .

[43]  A. Granier,et al.  The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment? , 2013, The New phytologist.

[44]  G. Goldstein,et al.  Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency , 2013, Oecologia.

[45]  Valerie Trouet,et al.  KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology , 2013 .

[46]  N. Loader,et al.  400-year May–August precipitation reconstruction for Southern England using oxygen isotopes in tree rings , 2013 .

[47]  M. Rojas,et al.  Large-Scale Control on the Patagonian Climate , 2013 .

[48]  E. Cook,et al.  Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode , 2012 .

[49]  Gerd Helle,et al.  Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability , 2012, Proceedings of the National Academy of Sciences.

[50]  P. Campanello,et al.  Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality? , 2012, Tree physiology.

[51]  I. Simmonds,et al.  The characteristic variability and connection to the underlying synoptic activity of the Amundsen‐Bellingshausen Seas Low , 2012 .

[52]  L. Polvani,et al.  Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere , 2011 .

[53]  D. Frank,et al.  A 350 year drought reconstruction from Alpine tree ring stable isotopes , 2010 .

[54]  S. Varela,et al.  Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia , 2010, Trees.

[55]  D. Bromwich,et al.  Historical SAM Variability. Part II: Twentieth-Century Variability and Trends from Reconstructions, Observations, and the IPCC AR4 Models* , 2009 .

[56]  J. Marengo,et al.  Present-day South American climate , 2009 .

[57]  G. Helle,et al.  A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. , 2009, Rapid communications in mass spectrometry : RCM.

[58]  P. E. Villagra,et al.  Influencias de las variaciones en el clima y en la concentración de C0(2) sobre el crecimiento de Nothofagus pumilio en la Patagonia , 2008 .

[59]  J. Marshall,et al.  Co-occurring species differ in tree-ring δ18O trends , 2006 .

[60]  G. Haug,et al.  The twentieth century was the wettest period in northern Pakistan over the past millennium , 2006, Nature.

[61]  G. Marshall Trends in the Southern Annular Mode from Observations and Reanalyses , 2003 .

[62]  R. Villalba,et al.  Large-Scale Temperature Changes across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years , 2003 .

[63]  A. R. Ennos,et al.  The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. , 2003, Journal of experimental botany.

[64]  Graham D. Farquhar,et al.  Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata , 2002 .

[65]  R. Villalba,et al.  Tree-ring growth patterns and temperature reconstruction from nothofagus pumilio (fagaceae) forests at the upper tree line of southern chilean patagonia , 2002 .

[66]  P. Aceituno,et al.  On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate , 1988 .

[67]  T. Wigley,et al.  On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology , 1984 .

[68]  G. Helle,et al.  A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples , 2011 .

[69]  J. Ehleringer,et al.  A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose , 2000 .

[70]  Edmundo Pisano Valdés Fitogeografía de Fuego - Patagonia chilena. I.- Comunidades vegetales entre las latitudes 52 y 56º S , 1977 .