Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding

[1]  Don C. Jones,et al.  Application of the Cottonscope for determining fiber maturity and fineness of an upland cotton MAGIC population , 2020 .

[2]  R. Mott,et al.  Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding , 2020, Heredity.

[3]  Vincent Garin,et al.  Multi-parent multi-environment QTL analysis: an illustration with the EU-NAM Flint population , 2020, Theoretical and Applied Genetics.

[4]  F. Bitton,et al.  Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population , 2020, Journal of experimental botany.

[5]  Laura E. Dixon,et al.  TEOSINTE BRANCHED1 regulates height and stem internode length in bread wheat , 2020, Journal of experimental botany.

[6]  Joseph L. Gage,et al.  Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions[OPEN] , 2020, Plant Cell.

[7]  Longbiao Guo,et al.  Genome-Wide Association Study of Grain Size Traits in Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Population , 2020, Frontiers in plant science.

[8]  R. Varshney,et al.  Integrating genomics for chickpea improvement: achievements and opportunities , 2020, Theoretical and Applied Genetics.

[9]  Kunjiang Yu,et al.  Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea : Glucosinolate content as an example , 2020 .

[10]  Y. Wang,et al.  Progeny performance and selection of superior trees within families in Larix olgensis , 2020, Euphytica.

[11]  L. Gomez,et al.  Genomics of Maize Stover Yield and Saccharification Efficiency Using a Multi-Parent Advanced Generation Intercross (MAGIC) Population , 2020 .

[12]  J. Biernaskie,et al.  Effects of breeding history and crop management on the root architecture of wheat , 2020, bioRxiv.

[13]  Rajeev K. Varshney,et al.  Fine mapping and gene cloning in the post-NGS era: advances and prospects , 2020, Theoretical and Applied Genetics.

[14]  U. Roessner,et al.  Insights Into Oxidized Lipid Modification in Barley Roots as an Adaptation Mechanism to Salinity Stress , 2020, Frontiers in Plant Science.

[15]  Vincent Garin,et al.  The influence of QTL allelic diversity on QTL detection in multi-parent populations: a simulation study in sugar beet , 2020, BMC Genomic Data.

[16]  F. Bitton,et al.  Genetic basis of phenotypic plasticity and genotype x environment interaction in a multi-parental population , 2020, bioRxiv.

[17]  K. Tan,et al.  Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum , 2020, Theoretical and Applied Genetics.

[18]  R. Oliver,et al.  Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot , 2020, Theoretical and Applied Genetics.

[19]  Qinghua Zhang,et al.  Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population , 2019, Theoretical and Applied Genetics.

[20]  Jinfa F. Zhang,et al.  Evaluation and genome-wide association study of Verticillium wilt resistance in a MAGIC population derived from intermating of eleven Upland cotton (Gossypium hirsutum) parents , 2019, Euphytica.

[21]  W. Powell,et al.  Origin Specific Genomic Selection: A Simple Process To Optimize the Favorable Contribution of Parents to Progeny , 2019, bioRxiv.

[22]  J. Sibiya,et al.  Gene action governing the inheritance of drought tolerance and selected agronomic traits in Ugandan groundnut (Arachis hypogaea L.) lines under drought environment , 2019, Euphytica.

[23]  R. Varshney,et al.  Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea) , 2019, Plant biotechnology journal.

[24]  H. Leung,et al.  Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population , 2019, Scientific Reports.

[25]  Zijie Zhang,et al.  RADAR: differential analysis of MeRIP-seq data with a random effect model , 2019, Genome Biology.

[26]  J. Léon,et al.  Effect of epistasis and environment on flowering time in barley reveals a novel flowering-delaying QTL allele , 2019, Journal of experimental botany.

[27]  Q. Yi,et al.  Dissecting the genetics of cold tolerance in a multiparental maize population , 2019, Theoretical and Applied Genetics.

[28]  L. F. Samayoa,et al.  Mapping of resistance to corn borers in a MAGIC population of maize , 2019, BMC Plant Biology.

[29]  K. Mayer,et al.  European maize genomes unveil pan-genomic dynamics of repeats and genes , 2019, bioRxiv.

[30]  J. Doebley,et al.  TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize , 2019, Genetics.

[31]  Don C. Jones,et al.  Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton , 2019, Molecular Genetics and Genomics.

[32]  Kevin P. Smith,et al.  Development of a Multiparent Population for Genetic Mapping and Allele Discovery in Six-Row Barley , 2019, Genetics.

[33]  Zhonghua Wang,et al.  Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat , 2019, Genome Biology.

[34]  T. Döring,et al.  Natural Selection Towards Wild-Type in Composite Cross Populations of Winter Wheat , 2019, bioRxiv.

[35]  Luigi Parrotta,et al.  Compatible and Incompatible Pollen-Styles Interaction in Pyrus communis L. Show Different Transglutaminase Features, Polyamine Pattern and Metabolomics Profiles , 2019, Front. Plant Sci..

[36]  Z. Fei,et al.  The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor , 2019, Nature Genetics.

[37]  Ravi Gupta,et al.  Whole Genome Sequencing and Comparative Genomic Analysis Reveal Allelic Variations Unique to a Purple Colored Rice Landrace (Oryza sativa ssp. indica cv. Purpleputtu) , 2019, Front. Plant Sci..

[38]  M. E. Pè,et al.  Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding , 2019, Scientific Reports.

[39]  B. E. Huang,et al.  The complex genetic architecture of recombination and structural variation in wheat uncovered using a large 8-founder MAGIC population , 2019, bioRxiv.

[40]  L. N. Jørgensen,et al.  Genetic Dissection of Resistance to the Three Fungal Plant Pathogens Blumeria graminis, Zymoseptoria tritici, and Pyrenophora tritici-repentis Using a Multiparental Winter Wheat Population , 2019, G3: Genes, Genomes, Genetics.

[41]  L. F. Samayoa,et al.  QTLs for Resistance to Fusarium Ear Rot in a Multiparent Advanced Generation Intercross (MAGIC) Maize Population. , 2019, Plant disease.

[42]  F. Montemurro,et al.  Multi-Parental Advances Generation Inter-Cross Population, to Develop Organic Tomato Genotypes by Participatory Plant Breeding , 2019, Agronomy.

[43]  J. Jenkins,et al.  A novel variant of Gh_D02G0276 is required for root-knot nematode resistance on chromosome 14 (D02) in Upland cotton , 2019, Theoretical and Applied Genetics.

[44]  M. E. Pè,et al.  A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat , 2019, Plant biotechnology journal.

[45]  J. Jenkins,et al.  Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population , 2019, BMC Genomics.

[46]  Haitao Zhao,et al.  Identification of the molecular relationship between intravenous leiomyomatosis and uterine myoma using RNA sequencing , 2019, Scientific Reports.

[47]  B. Yandell,et al.  R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations , 2018, Genetics.

[48]  E. Wosula,et al.  Impact of Host Plant Species and Whitefly Species on Feeding Behavior of Bemisia tabaci , 2019, Front. Plant Sci..

[49]  A. Szilágyi,et al.  Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor , 2019, Scientific Reports.

[50]  G. D. da Rocha,et al.  Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles , 2019, Scientific Reports.

[51]  V. Mohler,et al.  Usefulness of a Multiparent Advanced Generation Intercross Population With a Greatly Reduced Mating Design for Genetic Studies in Winter Wheat , 2018, Front. Plant Sci..

[52]  Don C. Jones,et al.  Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.) , 2018, Theoretical and Applied Genetics.

[53]  Qinghua Zhang,et al.  Genetic Properties of a Nested Association Mapping Population Constructed With Semi-Winter and Spring Oilseed Rapes , 2018, Front. Plant Sci..

[54]  S. Takada,et al.  Mapping of a responsible region for sex reversal upstream of Sox9 by production of mice with serial deletion in a genomic locus , 2018, Scientific Reports.

[55]  F. Stoddard,et al.  A multi-parent faba bean (Vicia faba L.) population for future genomic studies , 2018, Plant Genetic Resources: Characterization and Utilization.

[56]  H. Leung,et al.  Genome-Wide Association Mapping in a Rice MAGIC Plus Population Detects QTLs and Genes Useful for Biofortification , 2018, Front. Plant Sci..

[57]  J. Yonemaru,et al.  Discovery of QTL Alleles for Grain Shape in the Japan-MAGIC Rice Population Using Haplotype Information , 2018, G3: Genes, Genomes, Genetics.

[58]  Jonathan D. G. Jones,et al.  Shifting the limits in wheat research and breeding using a fully annotated reference genome , 2018, Science.

[59]  Santhilata Kuppili Venkata,et al.  The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens , 2018, bioRxiv.

[60]  J. Léon,et al.  Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800 , 2018, BMC Genomics.

[61]  F. V. van Eeuwijk,et al.  Accurate Genotype Imputation in Multiparental Populations from Low-Coverage Sequence , 2018, Genetics.

[62]  K. Jordan,et al.  The genetic architecture of genome‐wide recombination rate variation in allopolyploid wheat revealed by nested association mapping , 2018, The Plant journal : for cell and molecular biology.

[63]  G. Ye,et al.  QTL Identification for Cooking and Eating Quality in indica Rice Using Multi-Parent Advanced Generation Intercross (MAGIC) Population , 2018, Front. Plant Sci..

[64]  R. Mott,et al.  Functional Mapping of Quantitative Trait Loci (QTLs) Associated With Plant Performance in a Wheat MAGIC Mapping Population , 2018, Front. Plant Sci..

[65]  Keith A. Gardner,et al.  Assessing European Wheat Sensitivities to Parastagonospora nodorum Necrotrophic Effectors and Fine-Mapping the Snn3-B1 Locus Conferring Sensitivity to the Effector SnTox3 , 2018, Front. Plant Sci..

[66]  S. Murray,et al.  Four Parent Maize (FPM) Population: Effects of Mating Designs on Linkage Disequilibrium and Mapping Quantitative Traits , 2018, The plant genome.

[67]  S. Murray,et al.  Four‐Parent Maize (FPM) Population: Development and Phenotypic Characterization , 2018 .

[68]  S. Marhan,et al.  Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis , 2018, Front. Plant Sci..

[69]  M. Yano,et al.  Haplotype-based allele mining in the Japan-MAGIC rice population , 2018, Scientific Reports.

[70]  Ira A. Herniter,et al.  A multi‐parent advanced generation inter‐cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.) , 2018, The Plant journal : for cell and molecular biology.

[71]  Laura E. Dixon,et al.  TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum)[OPEN] , 2018, Plant Cell.

[72]  Jianping Wang,et al.  Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array , 2018, Front. Plant Sci..

[73]  H. Leung,et al.  Allelic variation for broad‐spectrum resistance and susceptibility to bacterial pathogens identified in a rice MAGIC population , 2018, Plant biotechnology journal.

[74]  Mikko J Sillanpää,et al.  Detection of Epistasis for Flowering Time Using Bayesian Multilocus Estimation in a Barley MAGIC Population , 2018, Genetics.

[75]  E. Quesada-Moraga,et al.  Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production , 2018, Front. Plant Sci..

[76]  A. C. Cruz,et al.  In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus , 2018, Scientific Reports.

[77]  Shizhong Xu,et al.  Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population , 2017, G3: Genes, Genomes, Genetics.

[78]  F. Ali,et al.  Dissection of Recombination Attributes for Multiple Maize Populations Using a Common SNP Assay , 2017, Front. Plant Sci..

[79]  G. Ejeta,et al.  Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum (Sorghum bicolor (L.) Moench) , 2017, G3: Genes, Genomes, Genetics.

[80]  G. Barker,et al.  Conversion of array‐based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (Triticum aestivum) , 2017, Plant biotechnology journal.

[81]  C. Vannini,et al.  Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens , 2017, Scientific Reports.

[82]  M. E. Pè,et al.  Joining smallholder farmers’ traditional knowledge with metric traits to select better varieties of Ethiopian wheat , 2017, Scientific Reports.

[83]  K. Oku,et al.  Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars , 2017, Breeding science.

[84]  M. E. Pè,et al.  Genome Wide Association Study to Identify the Genetic Base of Smallholder Farmer Preferences of Durum Wheat Traits , 2017, Front. Plant Sci..

[85]  S. Myles,et al.  LinkImputeR: user-guided genotype calling and imputation for non-model organisms , 2017, BMC Genomics.

[86]  P. Cregan,et al.  Genetic Characterization of the Soybean Nested Association Mapping Population , 2017, The plant genome.

[87]  H. Leung,et al.  Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population , 2017, G3: Genes, Genomes, Genetics.

[88]  R. Perumal,et al.  Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population , 2017, Genetics.

[89]  E. Buckler,et al.  Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population , 2017, G3: Genes, Genomes, Genetics.

[90]  John K. McCooke,et al.  A chromosome conformation capture ordered sequence of the barley genome , 2017, Nature.

[91]  G. Gurr,et al.  Phytoplasmas–The “Crouching Tiger” Threat of Australian Plant Pathology , 2017, Front. Plant Sci..

[92]  Christopher A. Fragoso,et al.  Genetic Architecture of a Rice Nested Association Mapping Population , 2017, G3: Genes, Genomes, Genetics.

[93]  K. Edwards,et al.  Wheat Landrace Genome Diversity , 2017, Genetics.

[94]  J. Holland,et al.  Enhancing genomic prediction with genome-wide association studies in multiparental maize populations , 2017, Heredity.

[95]  Gunnar Rätsch,et al.  Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits , 2017, Genetics.

[96]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[97]  E. Mardis DNA sequencing technologies: 2006–2016 , 2017, Nature Protocols.

[98]  C. K. Chan,et al.  The pangenome of an agronomically important crop plant Brassica oleracea , 2016, Nature Communications.

[99]  Don C. Jones,et al.  A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton , 2016, BMC Genomics.

[100]  Don C. Jones,et al.  A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton , 2016, BMC Genomics.

[101]  R. Chris Gaynor,et al.  Maximizing the potential of multi-parental crop populations , 2016, Applied & translational genomics.

[102]  John H. Doonan,et al.  Determining Phenological Patterns Associated with the Onset of Senescence in a Wheat MAGIC Mapping Population , 2016, Front. Plant Sci..

[103]  Robert P. Davey,et al.  An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations , 2016, bioRxiv.

[104]  M. Koornneef,et al.  Fine mapping of a major QTL for awn length in barley using a multiparent mapping population , 2016, Theoretical and Applied Genetics.

[105]  R. Bernardo Bandwagons I, too, have known , 2016, Theoretical and Applied Genetics.

[106]  S. Garland,et al.  CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker , 2016, PloS one.

[107]  Longbiao Guo,et al.  Characterization of Three Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Populations for Quantitative Trait Loci Identification , 2016, The plant genome.

[108]  Eva-Maria Willing,et al.  Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms , 2016, Proceedings of the National Academy of Sciences.

[109]  Simon Myers,et al.  Rapid genotype imputation from sequence without reference panels , 2016, Nature Genetics.

[110]  Yichen Shen,et al.  Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene , 2016, Nature Communications.

[111]  J. Anderson,et al.  Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing , 2016, PloS one.

[112]  Kevin P. Smith,et al.  Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley , 2016, Genetics.

[113]  Yogan Monnier,et al.  The Impact of Competition and Allelopathy on the Trade-Off between Plant Defense and Growth in Two Contrasting Tree Species , 2016, Front. Plant Sci..

[114]  A. Rathore,et al.  Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects , 2016, Front. Plant Sci..

[115]  H. Leung,et al.  QTL mapping for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines , 2016 .

[116]  J. Marchini,et al.  A multiple phenotype imputation method for genetic studies , 2016, Nature Genetics.

[117]  S. Salvi,et al.  A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). , 2016, Plant biotechnology journal.

[118]  Keith A. Gardner,et al.  A highly recombined, high‐density, eight‐founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments , 2016, Plant biotechnology journal.

[119]  David Sankoff,et al.  Locating rearrangement events in a phylogeny based on highly fragmented assemblies , 2016, BMC Genomics.

[120]  Hongyu Zhao,et al.  Imputing genotypes in biallelic populations from low-coverage sequence data 1 , 2015 .

[121]  Uwe Scholz,et al.  Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus , 2015, Scientific Data.

[122]  Kenneth L. McNally,et al.  Allele mining and enhanced genetic recombination for rice breeding , 2015, Rice.

[123]  Kenneth L. McNally,et al.  Allele mining and enhanced genetic recombination for rice breeding , 2015, Rice.

[124]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[125]  Keith A. Gardner,et al.  Fine-Mapping the Wheat Snn1 Locus Conferring Sensitivity to the Parastagonospora nodorum Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation Inter-Cross Population , 2015, G3: Genes, Genomes, Genetics.

[126]  Peter J. Bradbury,et al.  Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize , 2015, BMC Biology.

[127]  Frederik Coppens,et al.  Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays , 2015, Genome Biology.

[128]  Xiaojing Wang,et al.  Corrigendum: Proteomic analysis of colon and rectal carcinoma using standard and customized databases , 2015, Scientific Data.

[129]  A. Sallam,et al.  Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.) , 2015, Genetica.

[130]  Martin P. Boer,et al.  Reconstruction of Genome Ancestry Blocks in Multiparental Populations , 2015, Genetics.

[131]  Katrina M. Dlugosch,et al.  Evolution of invasiveness through increased resource use in a vacant niche , 2015, Nature Plants.

[132]  B. E. Huang,et al.  Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL , 2015, Genome Biology.

[133]  M. Causse,et al.  Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. , 2015, Plant biotechnology journal.

[134]  Peter J. Bradbury,et al.  Genome-Wide Association of Carbon and Nitrogen Metabolism in the Maize Nested Association Mapping Population1[OPEN] , 2015, Plant Physiology.

[135]  J. Reif,et al.  Modelling the genetic architecture of flowering time control in barley through nested association mapping , 2015, BMC Genomics.

[136]  H. Leung,et al.  MAGIC populations in crops: current status and future prospects , 2015, Theoretical and Applied Genetics.

[137]  Chuan He,et al.  Fate by RNA methylation: m6A steers stem cell pluripotency , 2015, Genome Biology.

[138]  B. Mathew,et al.  Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept , 2015, Molecular Breeding.

[139]  B. Cullis,et al.  Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat , 2015, Nature Plants.

[140]  Xuewei Chen,et al.  A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21-mediated disease resistance , 2015, Rice.

[141]  Yiannis A. Savva,et al.  Dynamic response of RNA editing to temperature in Drosophila , 2015, BMC Biology.

[142]  Doreen Ware,et al.  Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica , 2014, Genome Biology.

[143]  J. Enjalbert,et al.  Efficiently Tracking Selection in a Multiparental Population: The Case of Earliness in Wheat , 2014, Genetics.

[144]  Sarah Hearne,et al.  Novel Methods to Optimize Genotypic Imputation for Low‐Coverage, Next‐Generation Sequence Data in Crop Plants , 2014 .

[145]  Paula X. Kover,et al.  The Genetic Basis of Natural Variation in Seed Size and Seed Number and Their Trade-Off Using Arabidopsis thaliana MAGIC Lines , 2014, Genetics.

[146]  James Cockram,et al.  An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation , 2014, G3: Genes, Genomes, Genetics.

[147]  A. Verbyla,et al.  Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC , 2014, G3: Genes, Genomes, Genetics.

[148]  R. Higgins,et al.  Multiparental Mapping of Plant Height and Flowering Time QTL in Partially Isogenic Sorghum Families , 2014, G3: Genes, Genomes, Genetics.

[149]  J. Chory,et al.  New Arabidopsis Advanced Intercross Recombinant Inbred Lines Reveal Female Control of Nonrandom Mating1[OPEN] , 2014, Plant Physiology.

[150]  R. Varshney,et al.  Marker‐Assisted Backcrossing to Introgress Resistance to Fusarium Wilt Race 1 and Ascochyta Blight in C 214, an Elite Cultivar of Chickpea , 2014 .

[151]  Hei Leung,et al.  Efficient Imputation of Missing Markers in Low-Coverage Genotyping-by-Sequencing Data from Multiparental Crosses , 2014, Genetics.

[152]  David J Balding,et al.  Multiple Quantitative Trait Analysis Using Bayesian Networks , 2014, Genetics.

[153]  Peter J. Bradbury,et al.  The Genetic Architecture Of Maize Height , 2014, Genetics.

[154]  G. Rebetzke,et al.  Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. , 2014, Plant biotechnology journal.

[155]  John K. McKay,et al.  Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana , 2013, Proceedings of the National Academy of Sciences.

[156]  M. Causse,et al.  Whole genome resequencing in tomato reveals variation associated with introgression and breeding events , 2013, BMC Genomics.

[157]  O. Martin,et al.  Intraspecific variation of recombination rate in maize , 2013, Genome Biology.

[158]  S. Knapp,et al.  Development and Phenotyping of Recombinant Inbred Line (RIL) Populations for Peanut (Arachis hypogaea) , 2013 .

[159]  Thomas M. Keane,et al.  Combined sequence-based and genetic mapping analysis of complex traits in outbred rats , 2013, Nature Genetics.

[160]  H. Leung,et al.  Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding , 2013, Rice.

[161]  D. Jordan,et al.  Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time , 2013, Theoretical and Applied Genetics.

[162]  Xingxue Mao,et al.  Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines , 2013, Euphytica.

[163]  Q. Qian,et al.  Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice , 2013, Rice.

[164]  Andrew W George,et al.  A multiparent advanced generation inter-cross population for genetic analysis in wheat. , 2012, Plant biotechnology journal.

[165]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[166]  A. Long,et al.  Properties and Power of the Drosophila Synthetic Population Resource for the Routine Dissection of Complex Traits , 2012, Genetics.

[167]  Peter J. Bradbury,et al.  Maize HapMap2 identifies extant variation from a genome in flux , 2012, Nature Genetics.

[168]  H. Hoekstra,et al.  Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species , 2012, PloS one.

[169]  Karsten M. Borgwardt,et al.  Whole-genome sequencing of multiple Arabidopsis thaliana populations , 2011, Nature Genetics.

[170]  M. Spector,et al.  A comparative analysis of exome capture , 2011, Genome Biology.

[171]  Vipin T. Sreedharan,et al.  Multiple reference genomes and transcriptomes for Arabidopsis thaliana , 2011, Nature.

[172]  D. Jordan,et al.  Exploring and Exploiting Genetic Variation from Unadapted Sorghum Germplasm in a Breeding Program , 2011 .

[173]  A. Kilian,et al.  Diversity arrays technology (DArT) markers in apple for genetic linkage maps , 2011, Molecular Breeding.

[174]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[175]  Peter J. Bradbury,et al.  Joint QTL Linkage Mapping for Multiple-Cross Mating Design Sharing One Common Parent , 2011, PloS one.

[176]  F. V. van Eeuwijk,et al.  Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population , 2011, Proceedings of the National Academy of Sciences.

[177]  Peter J. Bradbury,et al.  Genome-wide association study of leaf architecture in the maize nested association mapping population , 2011, Nature Genetics.

[178]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[179]  Qi Zhang,et al.  Efficient genome ancestry inference in complex pedigrees with inbreeding , 2010, Bioinform..

[180]  F. V. van Eeuwijk,et al.  Detection and use of QTL for complex traits in multiple environments. , 2010, Current opinion in plant biology.

[181]  G. Esbroeck,et al.  Use of a Maize Advanced Intercross Line for Mapping of QTL for Northern Leaf Blight Resistance and Multiple Disease Resistance , 2010 .

[182]  M. McMullen,et al.  Genetic Properties of the Maize Nested Association Mapping Population , 2009, Science.

[183]  R. Mott,et al.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana , 2009, PLoS genetics.

[184]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[185]  P. Etter,et al.  Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers , 2008, PloS one.

[186]  Sharon R. Browning,et al.  Missing data imputation and haplotype phase inference for genome-wide association studies , 2008, Human Genetics.

[187]  R. Bernardo Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years , 2008 .

[188]  Alan Mackay-Sim,et al.  Fibroblast and Lymphoblast Gene Expression Profiles in Schizophrenia: Are Non-Neural Cells Informative? , 2008, PloS one.

[189]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[190]  N. Galic,et al.  Insight into the genetic bases of climatic adaptation in experimentally evolving wheat populations , 2008, Molecular ecology.

[191]  Zhanjiang Liu DNA Sequencing Technologies , 2007 .

[192]  J. Cheverud,et al.  Antagonistic pleiotropic effects reduce the potential adaptive value of the FRIGIDA locus , 2007, Proceedings of the National Academy of Sciences.

[193]  Edward S. Buckler,et al.  TASSEL: software for association mapping of complex traits in diverse samples , 2007, Bioinform..

[194]  Detlef Weigel,et al.  Recombination and linkage disequilibrium in Arabidopsis thaliana , 2007, Nature Genetics.

[195]  Karl W. Broman,et al.  Poor Performance of Bootstrap Confidence Intervals for the Location of a Quantitative Trait Locus , 2006, Genetics.

[196]  R. Mott,et al.  Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice , 2005, Genetics.

[197]  K. Broman The Genomes of Recombinant Inbred Lines , 2004, Genetics.

[198]  D. Grant,et al.  Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population , 2002, Plant Molecular Biology.

[199]  C. Hackett,et al.  Interval mapping of quantitative trait loci in autotetraploid species. , 2001, Genetics.

[200]  A. C. Collins,et al.  A method for fine mapping quantitative trait loci in outbred animal stocks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[201]  M. Soller,et al.  Advanced intercross lines, an experimental population for fine genetic mapping. , 1995, Genetics.

[202]  J. Dudley Molecular Markers in Plant Improvement: Manipulation of Genes Affecting Quantitative Traits , 1993 .

[203]  J. Cockram,et al.  Genetic Mapping Populations for Conducting High-Resolution Trait Mapping in Plants. , 2018, Advances in biochemical engineering/biotechnology.

[204]  Mei Yang,et al.  Genetic characterization of a multiparent recombinant inbred line of rice population , 2014 .

[205]  Peter Hedden,et al.  The genes of the Green Revolution. , 2003, Trends in genetics : TIG.

[206]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .