Disturbance Decoupling with Quadratic Stability for Polytopic Uncertain Switched Linear Systems

Abstract In this paper two disturbance decoupling problems without stability and with quadratic stability via state feedback for polytopic uncertain switched linear systems are investigated. Firstly, simultaneous invariant subspaces for a family of linear systems with two types of state feedback are investigated. Next, disturbance decoupling problems via state feedback for polytopic uncertain switched linear system are formulated and sufficient conditions for the problems to be solvable are presented. Further, the combined problems of disturbance decoupling and quadratic stabilizability are also investigated.

[1]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[2]  Naohisa Otsuka Disturbance decoupling with quadratic stability for switched linear systems , 2010, Syst. Control. Lett..

[3]  Takuya Soga,et al.  Quadratic stabilizability for polytopic uncertain continuous-time switched linear systems via switched observer , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[4]  Hans Zwart,et al.  Geometric Theory for Infinite Dimensional Systems , 1989 .

[5]  Naohisa Otsuka Generalized controlled and conditioned invariances for linear ω-periodic discrete-time systems , 2001 .

[6]  G. Zhai,et al.  Quadratic stabilizability of switched linear systems with polytopic uncertainties , 2003 .

[7]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[8]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[9]  S. Ge,et al.  Switched Linear Systems: Control and Design , 2005 .

[10]  O. Grasselli,et al.  The geometric approach for linear periodic discrete-time systems , 1991 .

[11]  R. Curtain Invariance concepts in infinite dimensions , 1986 .

[12]  A. Isidori Nonlinear Control Systems , 1985 .

[13]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[14]  Naohisa Otsuka A necessary and sufficient condition for parameter insensitive disturbance-rejection problem with state feedback , 2006, Autom..

[15]  Naohisa Otsuka Necessary and sufficient conditions for parameter insensitive disturbance-rejection problems with dynamic output feedback , 2007, IMA J. Math. Control. Inf..

[16]  Naohisa Otsuka Generalized invariant subspaces and parameter insensitive disturbance-rejection problems with static output feedback , 2000, IEEE Trans. Autom. Control..

[17]  S. P. Bhattacharyya Generalized Controllability, (A, B)-invariant Subspaces and Parameter Invariant Control , 1983 .

[18]  Naohisa Otsukay,et al.  Quadratic stablizability for polytopic uncertain continuous-time switched linear systems composed of two subsystems , 2010 .

[19]  J. Schumacher Compensator synthesis using (C,A,B)-pairs , 1980 .