Polymorphisms, and How to Use Them

This article describes the algebraic approach to Constraint Satisfaction Problem that led to many developments in both CSP and universal algebra. No prior knowledge of universal algebra is assumed.

[1]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[2]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[3]  L. A. Kaluzhnin,et al.  Galois theory for Post algebras. II , 1969 .

[4]  J. Hagemann,et al.  Onn-permutable congruences , 1973 .

[5]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[6]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[7]  W. Taylor Varieties Obeying Homotopy Laws , 1977, Canadian Journal of Mathematics.

[8]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[9]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[10]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[11]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[12]  Eric Allender,et al.  Making nondeterminism unambiguous , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[13]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[14]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[15]  Peter Jeavons,et al.  Constructing Constraints , 1998, CP.

[16]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[17]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[18]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[19]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[20]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[21]  Eric Allender,et al.  Isolation, Matching, and Counting Uniform and Nonuniform Upper Bounds , 1999, J. Comput. Syst. Sci..

[22]  Justin Pearson,et al.  Closure Functions and Width 1 Problems , 1999, CP.

[23]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[24]  P. Jeavons Algebraic structures in combinatorial problems , 2001 .

[25]  Andrei A. Bulatov,et al.  Mal'tsev constraints are tractable , 2002, Electron. Colloquium Comput. Complex..

[26]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[27]  A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[28]  Neil Immerman,et al.  The complexity of satisfiability problems: Refining Schaefer's theorem , 2009, J. Comput. Syst. Sci..

[29]  Víctor Dalmau,et al.  Generalized majority-minority operations are tractable , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[30]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[31]  Christoph Meinel,et al.  Structure and importance of logspace-MOD class , 1992, Mathematical systems theory.

[32]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[33]  Toby Walsh,et al.  Handbook of Constraint Programming (Foundations of Artificial Intelligence) , 2006 .

[34]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[35]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[36]  Benoît Larose,et al.  Taylor Terms, Constraint Satisfaction and the Complexity of Polynomial Equations over Finite Algebras , 2006, Int. J. Algebra Comput..

[37]  Emil W. Kiss,et al.  On Tractability and Congruence Distributivity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[38]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[39]  Pascal Tesson,et al.  Symmetric Datalog and Constraint Satisfaction Problems in Logspace , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[40]  Johan Håstad On the efficient approximability of constraint satisfaction problems , 2007 .

[41]  Pawel M. Idziak,et al.  Tractability and learnability arising from algebras with few subpowers , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[42]  Miklós Maróti,et al.  CD(4) has bounded width , 2007, ArXiv.

[43]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[44]  Víctor Dalmau,et al.  Maltsev + Datalog --≫ Symmetric Datalog , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[45]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[46]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[47]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[48]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.

[49]  Andrei A. Krokhin,et al.  Majority constraints have bounded pathwidth duality , 2008, Eur. J. Comb..

[50]  Libor Barto,et al.  Congruence Distributivity Implies Bounded Width , 2009, SIAM J. Comput..

[51]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[52]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[53]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[54]  Benoît Larose,et al.  Omitting Types, Bounded Width and the Ability to Count , 2009, Int. J. Algebra Comput..

[55]  Anuj Dawar,et al.  Affine systems of equations and counting infinitary logic , 2009 .

[56]  Mario Szegedy,et al.  A new line of attack on the dichotomy conjecture , 2009, STOC '09.

[57]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[58]  Andrei A. Krokhin,et al.  CSP duality and trees of bounded pathwidth , 2010, Theor. Comput. Sci..

[59]  Ross Willard Testing Expressibility Is Hard , 2010, CP.

[60]  M. Siggers A strong Mal’cev condition for locally finite varieties omitting the unary type , 2010 .

[61]  POLYMORPHISMS OF SMALL DIGRAPHS , 2010 .

[62]  Andrei A. Bulatov,et al.  Complexity of conservative constraint satisfaction problems , 2011, TOCL.

[63]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[64]  Alexandr Kazda,et al.  Maltsev digraphs have a majority polymorphism , 2009, Eur. J. Comb..

[65]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[66]  Barnaby Martin,et al.  A Tetrachotomy for Positive First-Order Logic without Equality , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[67]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[68]  Hubie Chen Meditations on Quantified Constraint Satisfaction , 2012, Logic and Program Semantics.

[69]  Libor Barto,et al.  Near Unanimity Constraints Have Bounded Pathwidth Duality , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[70]  Ryan O'Donnell,et al.  Linear programming, width-1 CSPs, and robust satisfaction , 2012, ITCS '12.

[71]  Andrei A. Bulatov,et al.  The complexity of the counting constraint satisfaction problem , 2008, JACM.

[72]  Dániel Marx,et al.  Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.

[73]  Martin E. Dyer,et al.  An Effective Dichotomy for the Counting Constraint Satisfaction Problem , 2010, SIAM J. Comput..

[74]  Martin C. Cooper,et al.  An Algebraic Theory of Complexity for Discrete Optimization , 2012, SIAM J. Comput..

[75]  Andrei A. Krokhin,et al.  Robust Satisfiability for CSPs: Hardness and Algorithmic Results , 2013, TOCT.

[76]  Stanislav Zivny,et al.  The complexity of finite-valued CSPs , 2013, STOC '13.

[77]  Venkatesan Guruswami,et al.  (2+ε)-Sat Is NP-hard , 2014, SIAM J. Comput..

[78]  L. Barto Finitely Related Algebras in Congruence Distributive Varieties Have Near Unanimity Terms , 2013, Canadian Journal of Mathematics.

[79]  R. McKenzie,et al.  Optimal strong Mal’cev conditions for omitting type 1 in locally finite varieties , 2014 .

[80]  Libor Barto,et al.  Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.

[81]  Vladimir Kolmogorov,et al.  The Power of Linear Programming for General-Valued CSPs , 2013, SIAM J. Comput..

[82]  Pavol Hell,et al.  Descriptive Complexity of List H-Coloring Problems in Logspace: A Refined Dichotomy , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[83]  Libor Barto,et al.  The wonderland of reflections , 2015, Israel Journal of Mathematics.

[84]  Michael Pinsker,et al.  Algebraic and model theoretic methods in constraint satisfaction , 2015, ArXiv.

[85]  Mario Szegedy,et al.  Impossibility Theorems and the Universal Algebraic Toolkit , 2015, ArXiv.

[86]  L. Barto,et al.  Mal’tsev conditions, lack of absorption, and solvability , 2015 .

[87]  R. Willard,et al.  Characterizations of several Maltsev conditions , 2015 .

[88]  Todd Niven,et al.  A finer reduction of constraint problems to digraphs , 2014, Log. Methods Comput. Sci..

[89]  Andrei A. Krokhin,et al.  Towards a Characterization of Constant-Factor Approximable Min CSPs , 2015, SODA.

[90]  Vladimir Kolmogorov,et al.  The Complexity of General-Valued CSPs , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[91]  Prasad Raghavendra,et al.  Combinatorial Optimization Algorithms via Polymorphisms , 2015, Electron. Colloquium Comput. Complex..

[92]  Andrei A. Bulatov Graphs of relational structures: restricted types , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[93]  Venkatesan Guruswami,et al.  New Hardness Results for Graph and Hypergraph Colorings , 2016, CCC.

[94]  Venkatesan Guruswami,et al.  Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean Dichotomy , 2017, Electron. Colloquium Comput. Complex..

[95]  Libor Barto,et al.  The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[96]  Andrei A. Bulatov,et al.  Conservative constraint satisfaction re-revisited , 2014, J. Comput. Syst. Sci..

[97]  Mario Szegedy,et al.  A new line of attack on the dichotomy conjecture , 2016, Eur. J. Comb..

[98]  Libor Barto,et al.  Robustly Solvable Constraint Satisfaction Problems , 2015, SIAM J. Comput..

[99]  Prasad Raghavendra,et al.  Correlation Decay and Tractability of CSPs , 2016, ICALP.

[100]  Libor Barto,et al.  The collapse of the bounded width hierarchy , 2016, J. Log. Comput..

[101]  R. McKenzie,et al.  Optimal strong Mal’cev conditions for congruence meet-semidistributivity in locally finite varieties , 2016 .

[102]  Todd Niven,et al.  Complexity and polymorphisms for digraph constraint problems under some basic constructions , 2016, Int. J. Algebra Comput..

[103]  Marcin Kozik Weak consistency notions for all the CSPs of bounded width∗ , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[104]  Manuel Bodirsky,et al.  Constraint Satisfaction Problems over Numeric Domains , 2017, The Constraint Satisfaction Problem.

[105]  Absorption in Universal Algebra and CSP , 2017, The Constraint Satisfaction Problem.

[106]  Hubie Chen,et al.  Asking the Metaquestions in Constraint Tractability , 2016, TOCT.

[107]  Konstantin Makarychev,et al.  Robust algorithms with polynomial loss for near-unanimity CSPs , 2016, SODA.

[108]  Andrei A. Bulatov Constraint satisfaction problems over semilattice block Mal'tsev algebras , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[109]  B. Larose Algebra and the Complexity of Digraph CSPs: a Survey , 2017 .

[110]  Stanislav Zivny,et al.  The Complexity of Valued CSPs ∗ , 2017 .

[111]  R. McKenzie,et al.  Maltsev families of varieties closed under join or Maltsev product , 2017 .

[112]  Manuel Bodirsky,et al.  Constraint Satisfaction Problems over Numeric Domains , 2017 .

[113]  Andrei A. Krokhin,et al.  The Constraint Satisfaction Problem: Complexity and Approximability (Dagstuhl Seminar 18231) , 2018, Dagstuhl Reports.

[114]  Alexandr Kazda,et al.  $n$-permutability and linear Datalog implies symmetric Datalog , 2015, Log. Methods Comput. Sci..

[115]  L. Barto Finitely related algebras in congruence modular varieties have few subpowers , 2018 .

[116]  Constraint Satisfaction Problems over semilattice block Mal'tsev algebras , 2019, Inf. Comput..