Mechanisms and properties of ion-transport in inorganic solid electrolytes

Abstract Compared with conventional lithium-ion batteries, all-solid-state lithium batteries (ASSLBs) based on inorganic solid electrolytes (ISEs) are relatively new research hotspots, which can overcome tough challenges in conventional lithium-ion batteries, such as potential combustion accidents resulted from flammable liquid electrolyte solvent, low energy density, and fussy manufacturing process. In this review, we focus on the ionic conductivity and stability of ISEs by discussing defect chemistry, ion-doping or elemental substitution, ion-transport mechanism, phase stability, and interfacial stability in representative ISEs (e.g., LISICON-like, NASICON-like, perovskite/anti-perovskite, and garnet electrolytes). The general illustration of structures and fundamental features being important to ionic conductivity or stability are examined, including ion occupancies, ion migration paths and dimensionalities, carrier types, point defects, ion-doping sites, and interfacial structures. Experimental and theoretical studies are discussed in parallel to give a deep and comprehensive understanding on ion transport, ion doping, and stability in ISEs. The common features of Li-ion transport mechanism and several possible research directions are also suggested for facilitating further improvement on the ASSLBs performance. We believe this review will contribute to the deep understanding on the ionic conductivity and stability of ISEs and help for further development of advanced ISEs in the field.

[1]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[2]  M. Nakayama,et al.  Insights into the Lithium-Ion Conduction Mechanism of Garnet-Type Cubic Li5La3Ta2O12 by ab-Initio Calculations , 2015 .

[3]  M. Sugiyama,et al.  Crystal Structure of Li7P3S11 Studied by Neutron and Synchrotron X-ray Powder Diffraction , 2010 .

[4]  H. Meyer,et al.  The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. , 2007, Physical chemistry chemical physics : PCCP.

[5]  J. Ryu,et al.  Electrochemical properties of Li7La3Zr2O12-based solid state battery , 2014 .

[6]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[7]  High-temperature lithium mobility in α-LiZr2(PO4)3 NASICON by neutron diffraction , 2003 .

[8]  Wenguang,et al.  Electron , 2020, Definitions.

[9]  Michael J. Hoffmann,et al.  Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor. , 2016, Inorganic chemistry.

[10]  Zachary D. Hood,et al.  Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes. , 2016, Journal of the American Chemical Society.

[11]  Y. Iriyama,et al.  In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery , 2014 .

[12]  Shyue Ping Ong,et al.  Rational Composition Optimization of the Lithium-Rich Li3OCl1–xBrx Anti-Perovskite Superionic Conductors , 2015 .

[13]  Y. Sadaoka,et al.  Electrical Properties of Sintered Lithium Titanium Phosphate Ceramics (Li1+XMXTi2−X(PO4)3, M3+ = Al3+, Sc3+, or Y3+) , 1990 .

[14]  Carlos Pecharromán,et al.  Relationship between Activation Energy and Bottleneck Size for Li+ Ion Conduction in NASICON Materials of Composition LiMM‘(PO4)3; M, M‘ = Ge, Ti, Sn, Hf , 1998 .

[15]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[16]  Lei Cheng,et al.  Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes , 2016, Chemistry of materials : a publication of the American Chemical Society.

[17]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[18]  Takeshi Kobayashi,et al.  Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 , 2011 .

[19]  G. Sahu,et al.  Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed-Field Gradient NMR , 2014 .

[20]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[21]  Y. Sakurai,et al.  Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries , 2016, Front. Energy Res..

[22]  Anton Van der Ven,et al.  Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors , 2013 .

[23]  Xiaoxiong Xu,et al.  All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science , 2015 .

[24]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[25]  M. Jansen,et al.  High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 < or = n < or = 2) and Li3-n(OHn)Br (1 < or = n < or = 2) at ambient temperatures. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  K. Knight,et al.  Perovskite solid electrolytes: Structure, transport properties and fuel cell applications , 1995 .

[27]  E. Cussen The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. , 2006, Chemical communications.

[28]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[29]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[30]  E. Cussen,et al.  Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x ≤ 1.6) , 2007 .

[31]  Masahiko Kato,et al.  Phase Diagram of the Li4GeS4–Li3PS4 Quasi-Binary System Containing the Superionic Conductor Li10GeP2S12 , 2015 .

[32]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[33]  P. Taberna,et al.  Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry , 2013 .

[34]  Stefan Adams,et al.  Bond valence analysis of structure-property relationships in solid electrolytes , 2006 .

[35]  Jie Xiao,et al.  Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems , 2016 .

[36]  Yuxing Wang,et al.  Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: The role of Ta substitution and H2O/CO2 exposure , 2015 .

[37]  Yoshiyuki Inaguma,et al.  A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator , 2013 .

[38]  G. Adachi,et al.  Ionic conducting lanthanide oxides. , 2002, Chemical reviews.

[39]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[40]  C. Liang,et al.  Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes , 2014 .

[41]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[42]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[43]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[44]  F. Tietz,et al.  A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity , 2016 .

[45]  Kota Suzuki,et al.  Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for use in all-solid-state batteries , 2016 .

[46]  Venkataraman Thangadurai,et al.  Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2) , 2008 .

[47]  C. Nan,et al.  Preparation and evaluation of high lithium ion conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte obtained using a new solution method , 2016 .

[48]  M. Tribus,et al.  A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7–3xGaxLa3 Zr2O12 with x = 0.08 to 0.84 , 2014, Inorganic chemistry.

[49]  Yutao Li,et al.  Optimizing Li+ conductivity in a garnet framework , 2012 .

[50]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[51]  Y. Orikasa,et al.  Structural and electronic features of binary Li2S-P2S5 glasses , 2016, Scientific Reports.

[52]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[53]  Shyue Ping Ong,et al.  Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation , 2013 .

[54]  Yutao Li,et al.  Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 , 2012 .

[55]  N. Dudney,et al.  Interface Limited Lithium Transport in Solid-State Batteries. , 2014, The journal of physical chemistry letters.

[56]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[57]  Z. Wen,et al.  Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method , 2011 .

[58]  J. Haruyama,et al.  Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. , 2017, ACS applied materials & interfaces.

[59]  Hong Li,et al.  High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory , 2015, Scientific Reports.

[60]  C. Bernuy-López,et al.  Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics , 2014 .

[61]  M. Hoelzel,et al.  Local structure and lithium mobility in intercalated Li3Al(x)Ti(2-x)(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study. , 2014, Physical chemistry chemical physics : PCCP.

[62]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[63]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[64]  K. Arbi,et al.  Li mobility in triclinic and rhombohedral phases of the Nasicon-type compound LiZr2(PO4)3 as deduced from NMR spectroscopy , 2002 .

[65]  Yan Chen,et al.  Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets , 2015 .

[66]  L. Dhivya,et al.  Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .

[67]  Michael T. Hutchings,et al.  Investigation of thermally induced Li+ ion disorder in Li2O using neutron diffraction , 1991 .

[68]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[69]  Xiaobo Liu,et al.  In situ fabrication of MWCNTs reinforce dielectric performances of polyarylene ether nitrile nanocomposite , 2014, Journal of Materials Science: Materials in Electronics.

[70]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[71]  E. R. Losilla,et al.  Li1+xAlxGeyTi2-x-y(PO4)3 NASICON Series , 2003 .

[72]  M. J. McDonald,et al.  Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites , 2015 .

[73]  S. Shi,et al.  Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations. , 2016, ACS applied materials & interfaces.

[74]  A. Hintennach,et al.  Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2−x(PO4)3 , 2015 .

[75]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[76]  J. Sakamoto,et al.  Hot-pressed Li0.33La0.57TiO3 , 2010 .

[77]  Yue Qi,et al.  Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries , 2013 .

[78]  A. Yoshiasa,et al.  Electrical Conductivities and Conduction Mechanisms of Perovskite‐type Na1‐xKxMgF3 (x = 0, 0.1, 1) and KZnF3 , 2005 .

[79]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[80]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[81]  Kazunori Takada,et al.  Interfacial nanoarchitectonics for solid-state lithium batteries. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[82]  R. Murugan,et al.  High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet , 2011 .

[83]  A. Hayashi,et al.  Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes , 2012, Electronic Materials Letters.

[84]  Wei Lai,et al.  Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x = 0–2) series , 2014 .

[85]  P. Hagenmuller,et al.  Structure and thermal expansion of LiGe2(PO4)3 , 1991 .

[86]  J. L. Narváez-Semanate,et al.  Microstructure and ionic conductivity of Li1 + xAlxTi2 − x(PO4)3 NASICON glass-ceramics , 2010 .

[87]  W. Richards,et al.  First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets , 2015 .

[88]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[89]  K. Arbi,et al.  Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A Parallel NMR and Electric Impedance Study , 2002 .

[90]  M. Nakayama,et al.  Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes , 2015 .

[91]  R. Mouta,et al.  Li+ interstitials as the charge carriers in superionic lithium-rich anti-perovskites , 2016 .

[92]  Q. Ma,et al.  Very fast bulk Li ion diffusivity in crystalline Li(1.5)Al(0.5)Ti(1.5)(PO4)3 as seen using NMR relaxometry. , 2015, Physical chemistry chemical physics : PCCP.

[93]  T. Šalkus,et al.  NMR Investigations in Li1.3Al0.3Ti1.7(PO4)3 Ceramics Part III: Local Dynamical Aspect Seen from Aluminum and Phosphorus Sites , 2017 .

[94]  K. Schwarz,et al.  DFT Study of the Role of Al3+ in the Fast Ion-Conductor Li7–3xAl3+xLa3Zr2O12 Garnet , 2014, Chemistry of materials : a publication of the American Chemical Society.

[95]  Jeremy J. Titman,et al.  Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .

[96]  Binod Kumar,et al.  Space-Charge-Mediated Superionic Transport in Lithium Ion Conducting Glass–Ceramics , 2009 .

[97]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[98]  P. Madden,et al.  Ionic diffusion within the α* and β phases of Ag3SI , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[99]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[100]  F. Rosciano,et al.  Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic , 2012 .

[101]  D. Siliqi,et al.  The martensitic nature of the transition monoclinic ⇌ rhombohedral of LiSn2(PO4)3 , 1992 .

[102]  Xi Chen,et al.  Mastering the interface for advanced all-solid-state lithium rechargeable batteries , 2016, Proceedings of the National Academy of Sciences.

[103]  S. Adams,et al.  Pathway models for fast ion conductors by combination of bond valence and reverse Monte Carlo methods , 2002 .

[104]  J. Greeley,et al.  First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF. , 2015, ACS applied materials & interfaces.

[105]  F. Tietz,et al.  A microcontact impedance study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) single crystals , 2016 .

[106]  Hongxia Geng,et al.  Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte , 2010 .

[107]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[108]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[109]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[110]  Yusheng Zhao,et al.  Experimental visualization of lithium conduction pathways in garnet-type , 2012 .

[111]  Young Jin Nam,et al.  Issues and Challenges for Bulk‐Type All‐Solid‐State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes , 2015 .

[112]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[113]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[114]  Lei Cheng,et al.  The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[115]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[116]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[117]  H. Yokokawa Thermodynamic stability of sulfide electrolyte/oxide electrode interface in solid-state lithium batteries , 2016 .

[118]  E. Wachsman,et al.  Highly conductive Li garnets by a multielement doping strategy. , 2015, Inorganic chemistry.

[119]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[120]  P. Cui,et al.  Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode , 2016 .

[121]  H. Yamasaki,et al.  Nanosecond quantum molecular dynamics simulations of the lithium superionic conductor Li 4-x Ge 1-x P x S 4 , 2014 .

[122]  Yuji Suzuki,et al.  Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol–Gel Process , 2010 .

[123]  Biyi Xu,et al.  Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles. , 2016, ACS applied materials & interfaces.

[124]  Liquan Chen,et al.  Lithium storage in perovskite lithium lanthanum titanate , 2013 .

[125]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[126]  F. Ciucci,et al.  Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors. , 2015, Physical chemistry chemical physics : PCCP.

[127]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[128]  E. Prince,et al.  Neutron powder diffraction study of solid solution Li1+xTi2−xInxP3O12: I. 0.0 ≤ x ≤ 0.4 , 1988 .

[129]  S. Burgard ISR , 1999 .

[130]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[131]  Xinmiao Liang,et al.  In-Channel and In-Plane Li Ion Diffusions in the Superionic Conductor Li10GeP2S12 Probed by Solid-State NMR , 2015 .

[132]  W. Richards,et al.  Design of Li1+2xZn1−xPS4, a new lithium ion conductor , 2016 .

[133]  Kai Liu,et al.  Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: Fabrication and application in lithium–hydrogen peroxide semi-fuel cell , 2014 .

[134]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[135]  Stefan Adams,et al.  From bond valence maps to energy landscapes for mobile ions in ion-conducting solids , 2006 .

[136]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[137]  N. Holzwarth,et al.  Modeling interfaces between solids: Application to Li battery materials , 2015 .

[138]  Yoshitaka Tateyama,et al.  Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[139]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[140]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[141]  Kota Suzuki,et al.  Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .

[142]  J. Carrasco,et al.  Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte , 2017 .

[143]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[144]  T. Ohno,et al.  Charged and Discharged States of Cathode/Sulfide Electrolyte Interfaces in All-Solid-State Lithium Ion Batteries , 2016 .

[145]  Ming Xu,et al.  Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .

[146]  K. Tadanaga,et al.  All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamato complexes , 2012 .

[147]  M. Osada,et al.  Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte , 2011 .

[148]  Yu Wang,et al.  Development of Electrolytes towards Achieving Safe and High‐Performance Energy‐Storage Devices: A Review , 2015 .

[149]  S. Tobishima,et al.  Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell , 2013 .

[150]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[151]  Y. Sadaoka,et al.  Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) , 1991 .

[152]  J. Rupp,et al.  Interface‐Engineered All‐Solid‐State Li‐Ion Batteries Based on Garnet‐Type Fast Li+ Conductors , 2016 .

[153]  A. Orliukas,et al.  NMR Investigations in Li1.3Al0.3Ti1.7(PO4)3 Ceramics. Part I: Structural Aspect , 2016 .

[154]  Andrew G. Glen,et al.  APPL , 2001 .

[155]  Gakuho Isomichi,et al.  Reduced Grain Boundary Resistance by Surface Modification , 2015 .

[156]  X. Lü,et al.  Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. , 2014, Chemical communications.

[157]  R. Mouta,et al.  Concentration of Charge Carriers, Migration, and Stability in Li3OCl Solid Electrolytes , 2014 .

[158]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[159]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[160]  Kota Suzuki,et al.  Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12 , 2015 .

[161]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[162]  C. Ziebert,et al.  Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte , 2016, Materials.

[163]  Stefan Adams,et al.  Structural requirements for fast lithium ion migration in Li10GeP2S12 , 2012 .

[164]  B. R. Shin,et al.  Comparative Study of TiS2/Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li3PS4 and Li10GeP2S12 Solid Electrolytes , 2014 .

[165]  Ashok Kumar Baral,et al.  Evaluation of fundamental transport properties of Li-excess garnet-type Li(5+2x)La(3)Ta(2-x)Y(x)O(12) (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. , 2014, Physical chemistry chemical physics : PCCP.

[166]  Khang Hoang,et al.  Origin of the structural phase transition in Li7La3Zr2O12. , 2012, Physical review letters.

[167]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[168]  Liquan Chen,et al.  Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte. , 2016, Physical chemistry chemical physics : PCCP.

[169]  Yue Wu,et al.  Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. , 2017, ACS applied materials & interfaces.

[170]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[171]  Kazuo Yamamoto,et al.  Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. , 2010, Angewandte Chemie.

[172]  S. Adams,et al.  Comparison of ion sites and diffusion paths in glasses obtained by molecular dynamics simulations and bond valence analysis , 2006, cond-mat/0607523.

[173]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[174]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[175]  Xiaoxiong Xu,et al.  Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries , 2015 .

[176]  S. Ito,et al.  Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system , 2002 .

[177]  G. Choi,et al.  The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates , 2001 .

[178]  Liquan Chen,et al.  Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method , 2014 .

[179]  Yusheng Zhao,et al.  Thermal expansion and structural distortion of perovskite — data for NaMgF3 perovskite. Part I , 1993 .

[180]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[181]  M. Hoffmann,et al.  Influence of the secondary phase LiTiOPO4 on the properties of Li1 + xAlxTi2 − x(PO4)3 (x = 0; 0.3) , 2017 .

[182]  Yutao Li,et al.  Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12 , 2016 .

[183]  Wenqing Zhang,et al.  Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis , 2014 .

[184]  J. Paasiv́irta,et al.  The Crystal Structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr. , 1968 .

[185]  Sebastian Wenzel,et al.  Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12 , 2016 .

[186]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[187]  Yi Zhang,et al.  Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites , 2013 .

[188]  Kazunari Yoshizawa,et al.  Lithium ion migration pathways in LiTi2(PO4)3 and related materials , 1999 .

[189]  A. Lundén Enhancement of cation mobility in some sulphate phases due to a paddle-wheel mechanism , 1988 .

[190]  Byungchan Han,et al.  Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte , 2015 .

[191]  Damir Čemerin,et al.  IV , 2011 .

[192]  V. Thangadurai,et al.  Dopant Concentration-Porosity-Li-Ion Conductivity Relationship in Garnet-Type Li5+2xLa3Ta2-xYxO12 (0.05 ≤ x ≤ 0.75) and Their Stability in Water and 1 M LiCl. , 2015, Inorganic chemistry.

[193]  Yutao Li,et al.  Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte , 2016 .

[194]  Joykumar S. Thokchom,et al.  Space Charge Signature and Its Effects on Ionic Transport in Heterogeneous Solids , 2007 .

[195]  Seung M. Oh,et al.  Thermo‐electrochemical Activation of an In–Cu Intermetallic Electrode for the Anode in Lithium Secondary Batteries , 2008 .

[196]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[197]  H. Ehrenberg,et al.  Evolution of microstructure and its relation to ionic conductivity in Li1 + xAlxTi2 − x(PO4)3 , 2016 .

[198]  D. Többens,et al.  A systematic study of Nasicon-type Li1 + xMxTi2 − x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy , 2014 .

[199]  J. Bovin,et al.  Solid Electrolyte Behavior of NaMgF3: Geophysical Implications , 1979, Science.

[200]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[201]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[202]  J. Tse,et al.  First-principles molecular simulations of Li diffusion in solid electrolytes Li3PS4 , 2015 .

[203]  Q. Ma,et al.  About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. , 2016, ACS applied materials & interfaces.

[204]  Yan Chen,et al.  A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction , 2015 .

[205]  M. Hoelzel,et al.  Structural factors that enhance lithium mobility in fast-ion Li(1+x)Ti(2-x)Al(x)(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100-500 K. , 2013, Inorganic chemistry.

[206]  M. J. McDonald,et al.  The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes , 2014 .

[207]  C. Elsässer,et al.  Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study , 2015 .

[208]  K. Amine,et al.  Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate , 2001 .

[209]  Yusheng Zhao Crystal Chemistry and Phase Transitions of Perovskite inP–T–XSpace: Data for (KxNa1−x)MgF3Perovskites , 1998 .

[210]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .

[211]  Sehee Lee,et al.  Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries , 2012 .

[212]  Y. Harada,et al.  Lithium ion conductivity of A-site deficient perovskite solid solutions , 1999 .

[213]  S. Hull,et al.  Superionics: crystal structures and conduction processes , 2004 .

[214]  Ming Xu,et al.  One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor , 2012 .

[215]  S. Park,et al.  Atomistic Simulation Study of Mixed-Metal Oxide (LiNi1/3Co1/3Mn1/3O2) Cathode Material for Lithium Ion Battery , 2012 .

[216]  Liyuan Han,et al.  Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery , 2014 .

[217]  Asma Sharafi,et al.  Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.

[218]  R. Murugan,et al.  Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .