Period analysis of the Logistic map for the finite field

[1]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[2]  Yasuyuki Nogami,et al.  A study of an automorphism on the logistic maps over prime fields , 2014, 2014 International Symposium on Information Theory and its Applications.

[3]  Kwok-Wo Wong,et al.  Period Distribution of Generalized Discrete Arnold Cat Map for $N=p^{e}$ , 2014, IEEE Transactions on Information Theory.

[4]  Kwok-Wo Wong,et al.  Period Distribution of the Generalized Discrete Arnold Cat Map for $N = 2^{e}$ , 2013, IEEE Transactions on Information Theory.

[5]  H. Krieger,et al.  Complex dynamics , 2012, Veterinary Record.

[6]  Xiqin Wang,et al.  Weak key analysis for chaotic cipher based on randomness properties , 2012, Science China Information Sciences.

[7]  Xiaofeng Liao,et al.  Security analysis of the public key algorithm based on Chebyshev polynomials over the integer ring ZN , 2011, Inf. Sci..

[8]  Ljupco Kocarev,et al.  Chaos-Based Cryptography - Theory, Algorithms and Applications , 2011, Chaos-Based Cryptography.

[9]  Satoshi Uehara,et al.  Some Properties of Logistic Maps over Integers , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Kwok-Wo Wong,et al.  On the Security of Public-Key Algorithms Based on Chebyshev Polynomials over the Finite Field $Z_N$ , 2010, IEEE Transactions on Computers.

[11]  Xiaojun Tong,et al.  Feedback image encryption algorithm with compound chaotic stream cipher based on perturbation , 2010, Science in China Series F: Information Sciences.

[12]  Shujun Li,et al.  Breaking a modified substitution-diffusion image cipher based on chaotic standard and logistic maps , 2009, ArXiv.

[13]  Gonzalo Alvarez,et al.  Cryptanalysis of a family of self-synchronizing chaotic stream ciphers , 2009, 0903.2928.

[14]  Rogelio Hasimoto-Beltrán,et al.  High-performance multimedia encryption system based on chaos. , 2008, Chaos.

[15]  J. Silverman The Arithmetic of Dynamical Systems , 2007 .

[16]  A. Pisarchik,et al.  Encryption and decryption of images with chaotic map lattices. , 2006, Chaos.

[17]  X. Liao,et al.  A novel block cryptosystem based on iterating a chaotic map , 2006 .

[18]  C. Chui,et al.  A symmetric image encryption scheme based on 3D chaotic cat maps , 2004 .

[19]  Kwok-Wo Wong,et al.  A chaotic cryptography scheme for generating short ciphertext , 2003 .

[20]  K. Wong,et al.  A fast chaotic cryptographic scheme with dynamic look-up table , 2002 .

[21]  K. Wong,et al.  A Modified Chaotic Cryptographic Method , 2001, Communications and Multimedia Security.

[22]  L. Kocarev,et al.  Chaos and cryptography: block encryption ciphers based on chaotic maps , 2001 .

[23]  Michael Peter Kennedy,et al.  Communications using chaos/spl Gt/MINUS. III. Performance bounds for correlation receivers , 2000 .

[24]  Guang Gong,et al.  Public-key cryptosystems based on cubic finite field extensions , 1999, IEEE Trans. Inf. Theory.

[25]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[26]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[27]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[28]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  Satoshi Uehara,et al.  Some properties of the maximum period on the logistic map over Z2n , 2014, 2014 International Symposium on Information Theory and its Applications.

[31]  Kwok-Wo Wong,et al.  Period Distribution of Generalized Discrete Arnold Cat Map for N=pe , 2012, IEEE Trans. Inf. Theory.

[32]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[33]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[34]  T. Kohda,et al.  Statistics of chaotic binary sequences , 1997, IEEE Trans. Inf. Theory.

[35]  Robert A. J. Matthews,et al.  On the Derivation of a "Chaotic" Encryption Algorithm , 1989, Cryptologia.

[36]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[37]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[38]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[39]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .