Convergence of Adaptive Sampling Schemes
暂无分享,去创建一个
Jean-Michel Marin | Christian P. Robert | Randal Douc | Arnaud Guillin | R. Douc | C. Robert | J. Marin | A. Guillin
[1] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[2] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[3] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[4] Jean-Michel Marin,et al. Iterated importance sampling in missing data problems , 2006, Comput. Stat. Data Anal..
[5] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[6] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[7] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[8] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[9] Eric P. Fox. Bayesian Statistics 3 , 1991 .
[10] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[11] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[12] Donald B. Rubin,et al. Comment : A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest : The SIR Algorithm , 1987 .
[13] D. Rubin,et al. The calculation of posterior distributions by data augmentation , 1987 .
[14] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[15] Yukito Iba,et al. Population-based Monte Carlo algorithms , 2000 .
[16] H. Kunsch. Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.
[17] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[18] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[19] J. Marin,et al. Population Monte Carlo , 2004 .
[20] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[21] Anatoly Zhigljavsky,et al. Self-regenerative Markov chain Monte Carlo with adaptation , 2003 .
[22] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[23] N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.
[24] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .
[25] Haikady N. Nagaraja,et al. Inference in Hidden Markov Models , 2006, Technometrics.
[26] Brian Jefferies. Feynman-Kac Formulae , 1996 .