Shock Wave Induced Switchable Phase Transition (Molecular Distortion Type) of Ammonium Sulfate Crystal

In the present context, ammonium sulfate (NH4)2SO4 crystal phase stability has been examined at shocked conditions and observed that the title crystal undergoes the reversible crystallographic phase transitions with respect to the number of shock pulses and the observed phase transition sequence is Pnam-Pnam-distorted Pnam- Pnam-Pnam for 0,1,2,3, and 4 shocks, respectively and the observed phase transition sequence is evaluated by X-ray diffraction (XRD), Raman spectroscopy and optical spectroscopy (UV-DRS). Based on the observed analytical experimental results, it is authenticated the occurrence of the reversible phase transition which is caused by the molecular distortions accompanied by the rotational disorder of ammonium and sulfate groups of ions because of the impact of shock waves. This report is the first of its kind regarding the switchable phase transition inclusive of static temperature experiments observed for title crystal.

[1]  Mateusz Z. Brela,et al.  Displacive or Order-Disorder Phase Transition? The H-bond Dynamics in Multicaloric Ammonium Sulfate , 2021 .

[2]  A. Almansour,et al.  Phase Transformation of Amorphous to Crystalline of Multiwall Carbon Nanotubes by Shock Waves , 2021 .

[3]  A. Saranraj,et al.  Phase stability analysis of shocked ammonium dihydrogen phosphate by X-ray and Raman scattering studies , 2020 .

[4]  A. Sivakumar,et al.  Impact of shock waves on vibrational and structural properties of glycine phosphite , 2020 .

[5]  Daofeng Sun,et al.  Stimuli-responsive structural changes in metal-organic frameworks. , 2020, Chemical communications.

[6]  K. Bharathi,et al.  Switchable Phase Transformation (Orthorhombic–Hexagonal) of Potassium Sulfate Single Crystal at Ambient Temperature by Shock Waves , 2020, Crystal Growth & Design.

[7]  S. Luo,et al.  Texture evolution in nanocrystalline Cu under shock compression , 2020, Journal of Applied Physics.

[8]  K. Bharathi,et al.  Shock Wave Driven Solid State Phase Transformation of Co3O4 to CoO Nanoparticles , 2020 .

[9]  S. Balachandar,et al.  Measurement of “Shock Wave Parameters” in a Novel Table-Top Shock Tube Using Microphones , 2020 .

[10]  H. Fan,et al.  Pressure Induced Nanoparticle Phase Behavior, Property, and Applications. , 2019, Chemical reviews.

[11]  Hai-tao Zhou,et al.  Symmetry breaking and switchable thermal dielectric behaviors triggered by order-disorder phase transition in a neutral co-crystallized organic adduct , 2019, Chemical Physics Letters.

[12]  D. Fu,et al.  Molecular design of high-temperature organic dielectric switches. , 2018, Chemical communications.

[13]  Yunzhi Tang,et al.  Ferroelectric Property, Switchable Dielectric, and Excellent Second Harmonic Generation Response in a Homochiral Organic Salt: l-Prolinammonium 1-Adamantane Carboxylate , 2018, Crystal Growth & Design.

[14]  A. Sivakumar,et al.  Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube , 2018 .

[15]  Yunzhi Tang,et al.  Reversible structural phase transition, ferroelectric and switchable dielectric properties of an adduct molecule of hexamethylenetetramine ferrocene carboxylic acid , 2017 .

[16]  K. Suslick,et al.  Shock Wave Chemistry in a Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[17]  K. Reddy,et al.  Experimental study of the effect of strong shock heated test gases with cubic zirconia , 2016 .

[18]  Shu-quan Zhang,et al.  Reversible Phase Transition Triggered by Order–Disorder Transformation of Carboxyl Oxygen Atoms Coupled with Distinct Reorientations in [HN(C4H9)3](fumrate)0.5·(fumaric acid)0.5 , 2016 .

[19]  Bingbing Liu,et al.  Pressure-Induced Phase Transition in Hydrogen-Bonded Supramolecular Structure: Ammonium Formate , 2014 .

[20]  Dean J. Miller,et al.  Pressure-induced amorphization in single-crystal Ta2O5 nanowires: a kinetic mechanism and improved electrical conductivity. , 2013, Journal of the American Chemical Society.

[21]  Chandra Kumar Dixit,et al.  Electrical Properties and Phase Transitions of Ammonium Sulphate Ferroelectrics , 2013 .

[22]  Xiaoli Huang,et al.  Large Volume Collapse during Pressure-Induced Phase Transition in Lithium Amide , 2012 .

[23]  Yan-juan Zhang,et al.  Reversible single-crystal-to-single-crystal transformation from achiral antiferromagnetic hexanuclears to a chiral ferrimagnetic double zigzag chain. , 2009, Journal of the American Chemical Society.

[24]  G. Zou,et al.  In situ x-ray observation of phase transitions in Mg2Si under high pressure , 2009 .

[25]  P. McMillan,et al.  High-pressure chemistry of nitride-based materials. , 2006, Chemical Society reviews.

[26]  Alfonso San-Miguel Nanomaterials under high-pressure. , 2006, Chemical Society reviews.

[27]  A. A. El-Fadl,et al.  Optical properties of pure and metal ions doped ammonium sulfate single crystals , 2006 .

[28]  I. Albinsson,et al.  Impedance spectroscopy studies of K2SO4 in the intermediate temperature regime , 2005 .

[29]  N. Bourne,et al.  The response of TiAl based alloys to one-dimensional shock loading , 2002 .

[30]  G. A. Mohamad,et al.  Anomalous Behavior in the Electrical and Optical Properties of Ammonium Sulfate Single Crystals in the Temperature Range 250–350 K , 2002 .

[31]  R. Murugan,et al.  Thermo-Raman spectroscopic studies on polymorphism in Na2SO4 , 2000 .

[32]  S. Jerzak Hypothetical phase transition, structural disorder and spontaneous polarization in ammonium sulfate crystals , 1997 .

[33]  J. Jørgensen,et al.  Structures and Phase Transitions of Na2SO4 , 1996 .

[34]  M. Gaffar,et al.  Investigations on the existence of a high-temperature phase transition in ammonium sulphate crystals , 1994 .

[35]  A. Shamah,et al.  X-ray studies of the high temperature phase transition of ammonium sulphate crystals , 1989 .

[36]  Y. Badr,et al.  On the Low Temperature Phase Transition in Ammonium Sulfate , 1982, July 16.

[37]  F. El-Kabbany Mechanism of thermal hysteresis in reversible transformation of K2SO4 , 1980 .

[38]  Z. Iqbal,et al.  Raman scattering study of ferroelectric phase transition in ammonium sulphate , 1976 .

[39]  H. D. Bist,et al.  Laser excited Raman spectrum of ammonium sulfate single crystal , 1975 .

[40]  H. D. Bist,et al.  A Point Charge Model for the Ferroelectric Transition in Ammonium Sulphate , 1974, March 1.

[41]  W. C. Hamilton,et al.  NEUTRON-DIFFRACTION STUDY OF THE STRUCTURES OF FERROELECTRIC AND PARAELECTRIC AMMONIUM SULFATE , 1966 .