Multimode quantum dynamics using Gaussian wavepackets: The Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH) method applied to the absorption spectrum of pyrazine.

The Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH) method is applied to calculate the S(2)(pipi( *)) absorption spectrum of the pyrazine molecule, whose diffuse structure results from the ultrafast nonadiabatic dynamics at the S(2)-S(1) conical intersection. The 24-mode second-order vibronic-coupling model of Raab et al. [J. Chem. Phys. 110, 936 (1999)] is employed, along with 4-mode and 10-mode reduced-dimensional variants of this model. G-MCTDH can be used either as an all-Gaussian approach or else as a hybrid method using a partitioning into primary modes, treated by conventional MCTDH basis functions, and secondary modes described by Gaussian particles. Comparison with standard MCTDH calculations shows that the method converges to the exact result. The variational, nonclassical evolution of the moving Gaussian basis is a key element in obtaining convergence. For high-dimensional systems, convergence is significantly accelerated if the method is employed as a hybrid scheme.

[1]  I. Burghardt,et al.  Gaussian-based techniques for quantum propagation from the time-dependent variational principle: Formulation in terms of trajectories of coupled classical and quantum variables. , 2008, The Journal of chemical physics.

[2]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[3]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[4]  J. Broeckhove,et al.  On the equivalence of time-dependent variational-principles , 1988 .

[5]  G. Worth,et al.  A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wavepackets. , 2004, Faraday discussions.

[6]  D. Shalashilin,et al.  The phase space CCS approach to quantum and semiclassical molecular dynamics for high-dimensional systems , 2004 .

[7]  D. Wiersma,et al.  FEMTOCHEMISTRY AND FEMTOBIOLOGY: ULTRAFAST EVENTS IN MOLECULAR SCIENCE , 2004 .

[8]  G. Worth,et al.  Relaxation of a system with a conical intersection coupled to a bath: A benchmark 24-dimensional wave packet study treating the environment explicitly , 1998 .

[9]  J. Light,et al.  Efficient distributed Gaussian basis for rovibrational spectroscopy calculations , 2000 .

[10]  Michael A. Robb,et al.  Solving the time-dependent Schrödinger equation for nuclear motion in one step: direct dynamics of non-adiabatic systems , 2008 .

[11]  H. Werner,et al.  Characterization of the S1–S2 conical intersection in pyrazine using ab initio multiconfiguration self‐consistent‐field and multireference configuration‐interaction methods , 1994 .

[12]  Hans-Dieter Meyer,et al.  An efficient and robust integration scheme for the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method , 1997 .

[13]  H. Metiu,et al.  A multiple trajectory theory for curve crossing problems obtained by using a Gaussian wave packet representation of the nuclear motion , 1986 .

[14]  G. Stock,et al.  Resonance Raman spectroscopy of the S1 and S2 states of pyrazine: Experiment and first principles calculation of spectra , 1995 .

[15]  E. Heller,et al.  Exact time‐dependent wave packet propagation: Application to the photodissociation of methyl iodide , 1982 .

[16]  P. Saalfrank,et al.  A local coherent-state approximation to system-bath quantum dynamics. , 2006, The Journal of chemical physics.

[17]  V. Batista,et al.  Matching-pursuit/split-operator-Fourier-transform simulations of excited-state nonadiabatic quantum dynamics in pyrazine. , 2006, The Journal of chemical physics.

[18]  U. Manthe,et al.  Wave‐packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl , 1992 .

[19]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[20]  D. Shalashilin,et al.  Description of tunneling with the help of coupled frozen Gaussians , 2001 .

[21]  Todd J. Martínez,et al.  Ab Initio Quantum Molecular Dynamics , 2002 .

[22]  I. Yamazaki,et al.  Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine and pyrimidine , 1983 .

[23]  Martin Karplus,et al.  Multidimensional variational Gaussian wave packet dynamics with application to photodissociation spectroscopy , 1990 .

[24]  Todd J. Martínez,et al.  A multiple spawning approach to tunneling dynamics , 2000 .

[25]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[26]  M. Thoss,et al.  Semiclassical description of nonadiabatic quantum dynamics: Application to the S1–S2 conical intersection in pyrazine , 2000 .

[27]  Lorenz S. Cederbaum,et al.  Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method , 1999 .

[28]  J. A. Barker,et al.  An efficient way to compute the gas—surface potential with application to “double rainbow” scattering , 1978 .

[29]  Irene Burghardt,et al.  Full quantum mechanical molecular dynamics using Gaussian wavepackets , 2003 .

[30]  E. Heller Time dependent variational approach to semiclassical dynamics , 1976 .

[31]  Lorenz S. Cederbaum,et al.  THE EFFECT OF A MODEL ENVIRONMENT ON THE S2 ABSORPTION SPECTRUM OF PYRAZINE : A WAVE PACKET STUDY TREATING ALL 24 VIBRATIONAL MODES , 1996 .

[32]  R. Levine,et al.  Multi-Electronic-State Molecular Dynamics: A Wave Function Approach with Applications , 1996 .

[33]  D. Shalashilin,et al.  Real time quantum propagation on a Monte Carlo trajectory guided grids of coupled coherent states: 26D simulation of pyrazine absorption spectrum. , 2004, The Journal of chemical physics.

[34]  G. Worth,et al.  Multiconfigurational system-bath dynamics using Gaussian wave packets: Energy relaxation and decoherence induced by a finite-dimensional bath , 2003 .

[35]  Haobin Wang,et al.  Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .

[36]  Ian R. Craig,et al.  Proton transfer reactions in model condensed-phase environments: Accurate quantum dynamics using the multilayer multiconfiguration time-dependent Hartree approach. , 2007, The Journal of chemical physics.

[37]  G. Stock,et al.  Ab initio characterization of the S1-S2 conical intersection in pyrazine and calculation of spectra , 1992 .

[38]  Eric J. Heller,et al.  Frozen Gaussians: A very simple semiclassical approximation , 1981 .

[39]  H. Metiu,et al.  A strategy for time dependent quantum mechanical calculations using a Gaussian wave packet representation of the wave function , 1985 .

[40]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  W. Domcke,et al.  Path‐integral treatment of multi‐mode vibronic coupling , 1994 .

[42]  P. Kramer,et al.  Geometry of the Time-Dependent Variational Principle in Quantum Mechanics , 1981 .

[43]  Lorenz S. Cederbaum,et al.  Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics , 2008 .

[44]  Lorenz S. Cederbaum,et al.  Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation , 2007 .

[45]  G. Worth,et al.  Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian , 1999 .