Evidence against a role of P-glycoprotein in the clearance of the Alzheimer’s disease Aβ1–42 peptides

[1]  S. Sagan,et al.  Cell‐penetrating peptides: 20 years later, where do we stand? , 2013, FEBS letters.

[2]  F. Tadini-Buoninsegni,et al.  A Method to Measure Hydrolytic Activity of Adenosinetriphosphatases (ATPases) , 2013, PloS one.

[3]  John Bond,et al.  The worldwide economic impact of dementia 2010 , 2013, Alzheimer's & Dementia.

[4]  D. Jamieson,et al.  Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo , 2013, Biochemical pharmacology.

[5]  A. Kaddoumi,et al.  Role of ABC transporters in the pathogenesis of Alzheimer's disease. , 2012, ACS chemical neuroscience.

[6]  F. Milletti,et al.  Cell-penetrating peptides: classes, origin, and current landscape. , 2012, Drug discovery today.

[7]  I. Alves,et al.  Membrane interactions of two arginine-rich peptides with different cell internalization capacities. , 2012, Biochimica et biophysica acta.

[8]  O. Lazarov,et al.  All in the Family: How the APPs Regulate Neurogenesis , 2012, Front. Neurosci..

[9]  S. Reissmann,et al.  Transduction of peptides and proteins into live cells by cell penetrating peptides , 2011, Journal of cellular biochemistry.

[10]  M. Fändrich,et al.  Assembly of Alzheimer's Aβ peptide into nanostructured amyloid fibrils , 2011 .

[11]  Peter T Nelson,et al.  Alzheimer’s Disease: Pathological Mechanisms and Recent Insights , 2011, Current neuropharmacology.

[12]  T. Iwatsubo,et al.  Amyloid‐β peptide(1‐40) elimination from cerebrospinal fluid involves low‐density lipoprotein receptor‐related protein 1 at the blood‐cerebrospinal fluid barrier , 2011, Journal of neurochemistry.

[13]  A. Kaddoumi,et al.  Up‐regulation of P‐glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P‐glycoprotein as a novel therapeutic target for Alzheimer's disease , 2011, The Journal of pharmacy and pharmacology.

[14]  M. Matamales,et al.  Cellular and Molecular Life Sciences REVIEW Modes of Ab toxicity in Alzheimer’s disease , 2022 .

[15]  T. Terasaki,et al.  Is P‐glycoprotein Involved in Amyloid‐β Elimination Across the Blood–Brain Barrier in Alzheimer's Disease? , 2010, Clinical pharmacology and therapeutics.

[16]  Deborah A. Ryan,et al.  An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies , 2010, Journal of Neuroscience Methods.

[17]  G. Wong,et al.  Arginine‐rich cell‐penetrating peptides , 2010, FEBS letters.

[18]  David S. Miller,et al.  Restoring Blood-Brain Barrier P-Glycoprotein Reduces Brain Amyloid-β in a Mouse Model of Alzheimer's Disease , 2010, Molecular Pharmacology.

[19]  L. Mucke Neuroscience: Alzheimer's disease , 2009, Nature.

[20]  F. Sharom,et al.  ABC efflux pump-based resistance to chemotherapy drugs. , 2009, Chemical reviews.

[21]  S. Cazaubon,et al.  The blood-brain barrier in brain homeostasis and neurological diseases. , 2009, Biochimica et biophysica acta.

[22]  J. Pons,et al.  Suppression of Amyloid Deposition Leads to Long-Term Reductions in Alzheimer's Pathologies in Tg2576 Mice , 2009, The Journal of Neuroscience.

[23]  D. Teplow,et al.  Amyloid β-Protein Assembly and Alzheimer Disease* , 2009, Journal of Biological Chemistry.

[24]  R. Deane,et al.  The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer's disease. , 2008, Current pharmaceutical design.

[25]  D. Selkoe,et al.  LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-β peptide in a blood–brain barrier in vitro model , 2008, Neurobiology of Disease.

[26]  H. Kroemer,et al.  MDR1‐P‐Glycoprotein (ABCB1) Mediates Transport of Alzheimer’s Amyloid‐β Peptides—Implications for the Mechanisms of Aβ Clearance at the Blood–Brain Barrier , 2007, Brain pathology.

[27]  V. Migonney,et al.  Ability of carbazole salts, inhibitors of Alzheimer beta-amyloid fibril formation, to cross cellular membranes. , 2007, European journal of pharmacology.

[28]  D. Selkoe,et al.  Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide , 2007, Nature Reviews Molecular Cell Biology.

[29]  T. Terasaki,et al.  Functional characterization of the brain-to-blood efflux clearance of human amyloid-β peptide (1–40) across the rat blood–brain barrier , 2006, Neuroscience Research.

[30]  T. Rabilloud,et al.  Silver staining of proteins in polyacrylamide gels , 2006, Nature Protocols.

[31]  R. Bendayan,et al.  In Situ Localization of P-glycoprotein (ABCB1) in Human and Rat Brain , 2006, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[32]  A. Garnier-Suillerot,et al.  Mechanism of thioflavin T accumulation inside cells overexpressing P-glycoprotein or multidrug resistance-associated protein: role of lipophilicity and positive charge. , 2006, Biochemical and biophysical research communications.

[33]  A. Fagan,et al.  P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. , 2005, The Journal of clinical investigation.

[34]  T. Iwatsubo,et al.  [Amyloid beta peptide]. , 2004, Nihon rinsho. Japanese journal of clinical medicine.

[35]  Dominic M. Walsh,et al.  Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease , 2004, Neuron.

[36]  Peter J. Lenting,et al.  LRP/Amyloid β-Peptide Interaction Mediates Differential Brain Efflux of Aβ Isoforms , 2004, Neuron.

[37]  M. Fromm,et al.  Importance of P-glycoprotein at blood-tissue barriers. , 2004, Trends in pharmacological sciences.

[38]  C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer's disease , 2004, Nature Reviews Neuroscience.

[39]  Z. Sauna,et al.  Biochemical basis of polyvalency as a strategy for enhancing the efficacy of P-glycoprotein (ABCB1) modulators: stipiamide homodimers separated with defined-length spacers reverse drug efflux with greater efficacy. , 2004, Biochemistry.

[40]  C. Dey,et al.  P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. , 2003, Pharmacological research.

[41]  Ülo Langel,et al.  A brief introduction to cell‐penetrating peptides , 2003, Journal of molecular recognition : JMR.

[42]  A. Schinkel,et al.  Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. , 2003, Advanced drug delivery reviews.

[43]  W. Priebe,et al.  Preferential efflux by P-glycoprotein, but not MRP1, of compounds containing a free electron donor amine. , 2002, Biochemical pharmacology.

[44]  D. Clarke,et al.  Determining the Dimensions of the Drug-binding Domain of Human P-glycoprotein Using Thiol Cross-linking Compounds as Molecular Rulers* , 2001, The Journal of Biological Chemistry.

[45]  D. Selkoe Alzheimer's disease: genes, proteins, and therapy. , 2001, Physiological reviews.

[46]  Peter B. Reiner,et al.  β‐Amyloid efflux mediated by p‐glycoprotein , 2001 .

[47]  D. Holtzman,et al.  Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. , 2000, The Journal of clinical investigation.

[48]  Ü. Langel,et al.  Cell-Penetrating Peptides , 2000, Methods in Molecular Biology.

[49]  D. Ettori,et al.  Correlation between the kinetics of anthracycline uptake and the resistance factor in cancer cells expressing the multidrug resistance protein or the P-glycoprotein. , 1999, Biochimica et biophysica acta.

[50]  F. Sharom,et al.  Linear and cyclic peptides as substrates and modulators of P-glycoprotein: peptide binding and effects on drug transport and accumulation. , 1998, The Biochemical journal.

[51]  B. Hyman,et al.  Amyloid β-Peptide Is Transported on Lipoproteins and Albumin in Human Plasma* , 1996, The Journal of Biological Chemistry.

[52]  F. Sharom,et al.  Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. , 1996, The Biochemical journal.

[53]  E. Teodori,et al.  Study of P-glycoprotein functionality in living resistant K562 cells after photolabeling with a verapamil analogue. , 1996, Biochemical pharmacology.

[54]  F. Sharom,et al.  Characterization of the ATPase activity of P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. , 1995, The Biochemical journal.

[55]  F. Sharom,et al.  Interaction of the P-glycoprotein Multidrug Transporter with Peptides and Ionophores (*) , 1995, The Journal of Biological Chemistry.

[56]  W. Priebe,et al.  P‐glycoprotein‐mediated efflux of hydroxyrubicin, a neutral anthracycline derivative, in resistant K562 cells , 1994, FEBS letters.

[57]  A. Garnier-Suillerot,et al.  Mobile ionophores are a novel class of P-glycoprotein inhibitors. The effects of ionophores on 4'-O-tetrahydropyranyl-adriamycin incorporation in K562 drug-resistant cells. , 1994, European journal of biochemistry.

[58]  H. Westerhoff,et al.  The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. , 1994, European journal of biochemistry.

[59]  A. Garnier-Suillerot,et al.  Non-competitive inhibition of P-glycoprotein-associated efflux of THP-adriamycin by verapamil in living K562 leukemia cells. , 1994, Biochimica et biophysica acta.

[60]  L. Mir,et al.  Absence of cooperativity for MgATP and verapamil effects on the ATPase activity of P-glycoprotein containing membrane vesicles. , 1993, Biochemical and biophysical research communications.

[61]  H. Westerhoff,et al.  Kinetics of daunorubicin transport by P-glycoprotein of intact cancer cells. , 1992, European journal of biochemistry.

[62]  J. Hardy,et al.  Alzheimer's disease: the amyloid cascade hypothesis. , 1992, Science.

[63]  F. Frézard,et al.  Determination of the osmotic active drug concentration in the cytoplasm of anthracycline-resistant and -sensitive K562 cells. , 1991, Biochimica et biophysica acta.

[64]  F. Frézard,et al.  Comparison of the binding of anthracycline derivatives to purified DNA and to cell nuclei. , 1990, Biochimica et biophysica acta.

[65]  C. Lozzio,et al.  Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. , 1975, Blood.

[66]  Dekan der Mathematisch-Naturwissenschaftlichen,et al.  Functional characterization of , 2014 .

[67]  A. Kaddoumi,et al.  Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer's disease. , 2012, Journal of Alzheimer's disease : JAD.

[68]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[69]  F. Sharom ABC multidrug transporters: structure, function and role in chemoresistance. , 2008, Pharmacogenomics.

[70]  B. Penke,et al.  Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. , 2004, Journal of peptide science : an official publication of the European Peptide Society.

[71]  R. Deane,et al.  LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. , 2004, Neuron.

[72]  H. Braak,et al.  Neuropathology of Alzheimer’s Disease , 2004 .

[73]  P. Reiner,et al.  beta-Amyloid efflux mediated by p-glycoprotein. , 2001, Journal of neurochemistry.

[74]  M. Gottesman,et al.  Is the multidrug transporter a flippase? , 1992, Trends in biochemical sciences.

[75]  P. Tarroux,et al.  Improvement and simplification of low‐background silver staining of proteins by using sodium dithionite , 1988, Electrophoresis.

[76]  C. Goodno Myosin active-site trapping with vanadate ion. , 1982, Methods in enzymology.

[77]  C. Goodno [12] Myosin active-site trapping with vanadate ion , 1982 .