Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction
暂无分享,去创建一个
[1] Anton J. Enright,et al. MicroRNA targets in Drosophila , 2003, Genome Biology.
[2] Julius Brennecke,et al. Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.
[3] C. Burge,et al. Prediction of Mammalian MicroRNA Targets , 2003, Cell.
[4] Terrence S. Furey,et al. The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..
[5] Y. Li,et al. Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[6] K. Gunsalus,et al. Combinatorial microRNA target predictions , 2005, Nature Genetics.
[7] Peter F. Stadler,et al. Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.
[8] William H Press,et al. Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[9] Mihaela Zavolan,et al. Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.
[10] Peter F. Stadler,et al. Local RNA base pairing probabilities in large sequences , 2006, Bioinform..
[11] Stijn van Dongen,et al. miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..
[12] Daniel J. Blankenberg,et al. 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. , 2007, Genome research.
[13] Michael Kertesz,et al. The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.
[14] L. Lim,et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.
[15] Dang D. Long,et al. Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.
[16] Stefan L Ameres,et al. The impact of target site accessibility on the design of effective siRNAs , 2008, Nature Biotechnology.
[17] Rolf Backofen,et al. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..
[18] Jirí Vanícek,et al. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: Implications for latency , 2008, Proceedings of the National Academy of Sciences.
[19] W. Filipowicz,et al. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.
[20] N. Rajewsky,et al. Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.
[21] Dang D. Long,et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.
[22] D. Bartel,et al. The impact of microRNAs on protein output , 2008, Nature.
[23] Mihaela Zavolan,et al. Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. , 2009, Genome research.
[24] D. Bartel. MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.
[25] Tongbin Li,et al. miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..
[26] C. Burge,et al. Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.
[27] Nikolaus Rajewsky,et al. Reexamining microRNA Site Accessibility in Drosophila: A Population Genomics Study , 2009, PloS one.
[28] Nectarios Koziris,et al. Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.
[29] Andrew M. Jenkinson,et al. Ensembl 2009 , 2008, Nucleic Acids Res..
[30] Martin Reczko,et al. The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..
[31] A. T. Freitas,et al. Current tools for the identification of miRNA genes and their targets , 2009, Nucleic acids research.
[32] Martin Reczko,et al. Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..
[33] A. Mele,et al. Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.
[34] U. A. Ørom,et al. Experimental identification of microRNA targets. , 2010, Gene.
[35] J. Lieberman,et al. Desperately seeking microRNA targets , 2010, Nature Structural &Molecular Biology.
[36] Scott B. Dewell,et al. Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.
[37] Molly Hammell,et al. Computational methods to identify miRNA targets. , 2010, Seminars in cell & developmental biology.
[38] Nicholas T. Ingolia,et al. Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.
[39] Anjali J. Koppal,et al. Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .
[40] Dong Yue,et al. Improving performance of mammalian microRNA target prediction , 2010, BMC Bioinformatics.
[41] Jirí Vanícek,et al. Efficient use of accessibility in microRNA target prediction , 2010, Nucleic Acids Res..
[42] Anders Krogh,et al. MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action. , 2011, RNA.
[43] E. Olson,et al. Pervasive roles of microRNAs in cardiovascular biology , 2011, Nature.