Matching admissible G2 Hermite data by a biarc-based subdivision scheme
暂无分享,去创建一个
[1] William H. Frey,et al. Designing Bézier conic segments with monotone curvature , 2000, Comput. Aided Geom. Des..
[2] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[3] Dereck S. Meek,et al. A Pythagorean hodograph quintic spiral , 1996, Comput. Aided Des..
[4] WangGuozhao,et al. Incenter subdivision scheme for curve interpolation , 2010 .
[5] Bruce R. Piper,et al. Interpolation with cubic spirals , 2004, Comput. Aided Geom. Des..
[6] Dereck S. Meek,et al. An involute spiral that matches G2 Hermite data in the plane , 2009, Comput. Aided Geom. Des..
[7] Yves Mineur,et al. A shape controled fitting method for Bézier curves , 1998, Comput. Aided Geom. Des..
[8] Neil A. Dodgson,et al. An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..
[9] M. Sabin. The use of piecewise forms for the numerical representation of shape , 1976 .
[10] K. M. Bolton. Biarc curves , 1975, Comput. Aided Des..
[11] Guozhao Wang,et al. Incenter subdivision scheme for curve interpolation , 2010, Comput. Aided Geom. Des..
[12] W. H. Frey,et al. 1. Approximation with Aesthetic Constraints , 1994, Designing Fair Curves and Surfaces.
[13] Nira Dyn,et al. Interpolatory convexity-preserving subdivision schemes for curves and surfaces , 1992, Comput. Aided Des..
[14] Bruce R. Piper,et al. Rational cubic spirals , 2008, Comput. Aided Des..
[15] Xunnian Yang. Normal based subdivision scheme for curve design , 2006, Comput. Aided Geom. Des..
[16] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[17] Zulfiqar Habib,et al. G 2 PH QUINTIC SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .
[18] D. Walton,et al. Clothoid spline transition spirals , 1992 .
[19] Dereck S. Meek,et al. G2 curve design with a pair of Pythagorean Hodograph quintic spiral segments , 2007, Comput. Aided Geom. Des..
[20] Dereck S. Meek,et al. A generalisation of the Pythagorean hodograph quintic spiral , 2004 .
[21] Zulfiqar Habib,et al. G 2 Pythagorean hodograph quintic transition between two circles , 2003 .
[22] P. Bézier. Numerical control : mathematics and applications , 1972 .
[23] Pierre Vandergheynst,et al. Non-linear subdivision using local spherical coordinates , 2003, Comput. Aided Geom. Des..
[24] Said M. Easa,et al. State of the Art of Highway Geometric Design Consistency , 1999 .
[25] Rida T. Farouki,et al. Pythagorean-hodograph quintic transition curves of monotone curvature , 1997, Comput. Aided Des..
[26] Zulfiqar Habib,et al. On PH quintic spirals joining two circles with one circle inside the other , 2007, Comput. Aided Des..
[27] Larry L. Schumaker,et al. Curve and Surface Fitting: Saint-Malo 1999 , 2000 .
[28] Zulfiqar Habib,et al. QUINTIC SPIRAL TRANSITION CURVES AND THEIR APPLICATIONS , 2004 .
[29] Dereck S. Meek,et al. Planar G 2 transition with a fair Pythagorean hodograph quintic curve , 2002 .
[30] Nira Dyn,et al. Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.
[31] Kimon P. Valavanis,et al. Using a biarc filter to compute curvature extremes of NURBS curves , 2009, Engineering with Computers.
[32] Dereck S. Meek,et al. Planar spirals that match G2 Hermite data , 1998, Comput. Aided Geom. Des..
[33] G. D. Sandel. Zur Geometrie der Korbbgen . , 1937 .
[34] Nira Dyn,et al. Geometric conditions for tangent continuity of interpolatory planar subdivision curves , 2012, Comput. Aided Geom. Des..
[35] Shinji Mukai,et al. Interpolating Involute Curves , 2000 .
[36] D. Walton,et al. Spiral arc spline approximation to a planar spiral , 1999 .