Chapter 11 Mathematical programming systems

Publisher Summary This chapter presents the organizational structure of basic mathematical programming system (MPS) data. The pervasiveness of linear programming (LP) in the commercial, applied, operations research community can be largely attributed to one characteristic of LP; if a physical situation can be abstracted to a model that can be expressed in the LP normal form, then there are several algorithms—the simplex is one and a host of implementations—mathematical programming systems (MPSs) can be applied to that normal form to produce an optimal solution to the model. Mathematical programming systems are much more than just implementations of the algorithms. The practical details of efficient implementation require large suites of computer programs with many options and perhaps many solution strategies which attempt to take advantage of the characteristics of different models. With the increasing size of models, being built, this power and flexibility is critical. Equally critical is the data management required to handle these models.

[1]  John A. Tomlin,et al.  Updated triangular factors of the basis to maintain sparsity in the product form simplex method , 1972, Math. Program..

[2]  Gene H. Golub,et al.  The simplex method of linear programming using LU decomposition , 1969, Commun. ACM.

[3]  Philip E. Gill,et al.  Practical optimization , 1981 .

[4]  James S. Welch The Data Management Needs of Mathematical Programming Applications , 1986 .

[5]  E. M. L. Beale,et al.  Mathematical programming in practice , 1968 .

[6]  H. P. Williams,et al.  Model Building in Mathematical Programming , 1979 .

[7]  E. M. L. Beale,et al.  The Evolution of Mathematical Programming Systems , 1985 .

[8]  Gerald G. Brown,et al.  Design and operation of a multicommodity production/distribution system using primal goal decomposition , 1987 .

[9]  Paula M. J. Harris Pivot selection methods of the Devex LP code , 1973, Math. Program..

[10]  Gerald G. Brown,et al.  Solving Generalized Networks , 1984 .

[11]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[12]  Robert J. Vanderbei,et al.  The AT&T KORBX® system , 1989, AT&T Technical Journal.

[13]  Harry M. Markowitz,et al.  The EAS-E application development system: principles and language summary , 1984, CACM.

[14]  Roy E. Marsten,et al.  The Design of the XMP Linear Programming Library , 1981, TOMS.

[15]  David M. Smith,et al.  A model-management framework for mathematical programming , 1984 .

[16]  Michael A. Saunders,et al.  A FAST, STABLE IMPLEMENTATION OF THE SIMPLEX METHOD USING BARTELS-GOLUB UPDATING , 1976 .

[17]  Michel Bénichou,et al.  The efficient solution of large-scale linear programming problems—some algorithmic techniques and computational results , 1977, Math. Program..

[18]  John A. Tomlin,et al.  Implementing Interior Point Linear Programming Methods in the Optimization Subroutine Library , 1992, IBM Syst. J..

[19]  R. E. Griffith,et al.  A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems , 1961 .

[20]  Linus Schrage,et al.  Linear, Integer, and Quadratic Programming with Lindo , 1984 .

[21]  Michael A. Saunders,et al.  A practical anti-cycling procedure for linearly constrained optimization , 1989, Math. Program..

[22]  E.M.L. Beale,et al.  Branch and Bound Methods for Mathematical Programming Systems , 1977 .

[23]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[24]  John A. Tomlin,et al.  Integration of a primal simplex network algorithm with a large-scale mathematical programming system , 1985, TOMS.

[25]  Nimrod Megiddo,et al.  On Finding Primal- and Dual-Optimal Bases , 1991, INFORMS J. Comput..

[26]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[27]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[28]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[29]  John J. H. Forrest,et al.  Vector processing in simplex and interior methods for linear programming , 1990 .

[30]  John J. H. Forrest,et al.  Practical Solution of Large Mixed Integer Programming Problems with Umpire , 1974 .

[31]  William Orchard-Hays History of Mathematical Programming Systems , 1984, Annals of the History of Computing.

[32]  John A. Tomlin,et al.  Formal optimization of some reduced linear programming problems , 1983, Math. Program..

[33]  G. Nemhauser,et al.  Integer Programming , 2020 .

[34]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[35]  J. Tomlin A note on comparing simplex and interior methods for linear programming , 1988 .

[36]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[37]  William Orchard-Hays,et al.  Advanced Linear-Programming Computing Techniques , 1968 .

[38]  John A. Tomlin Large scale mathematical programming systems , 1983 .

[39]  John A. Tomlin,et al.  Implementing the Simplex Method for the Optimization Subroutine Library , 1992, IBM Syst. J..

[40]  J. Meeraus A. Bisschop,et al.  ON THE DEVELOPMENT OF A GENERAL ALGEBRAIC MODELING SYSTEM IN A STRATEGIC PLANNING ENVIRONMENT , 1982 .

[41]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[42]  Harvey J. Greenberg,et al.  A Functional Description of ANALYZE: A Computer-Assisted Analysis System for Linear Programming Models , 1983, TOMS.

[43]  Jr. James S. Welch,et al.  PAM- a practitioner's approach to modeling , 1987 .

[44]  Thomas E. Baker A hierarchical/relational approach to modeling , 1990 .

[45]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[46]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[47]  Gerald G. Brown,et al.  Design and Implementation of Large-Scale Primal Transshipment Algorithms , 1976 .

[48]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[49]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[50]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[51]  E. M. L. Beale,et al.  Global optimization using special ordered sets , 1976, Math. Program..