Affine representability results in A^1-homotopy theory III: finite fields and complements
暂无分享,去创建一个
[1] A. Hogadi,et al. Gabber’s presentation lemma for finite fields , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).
[2] A. Asok,et al. Generically split octonion algebras and 𝔸1-homotopy theory , 2017, Algebra & Number Theory.
[3] A. Asok,et al. Affine representability results in 1–homotopy theory, II : Principal bundles and homogeneous spaces , 2015, 1507.08020.
[4] B. Doran,et al. Smooth Models of Motivic Spheres and the Clutching Construction , 2016 .
[5] A. Asok,et al. Affine representability results in A-homotopy theory I: vector bundles , 2016 .
[6] I. Panin,et al. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields , 2012, 1211.2678.
[7] B. Conrad. Reductive Group Schemes , 2014 .
[8] F. Morel. A1-Algebraic Topology over a Field , 2012 .
[9] J. Alper. Adequate moduli spaces and geometrically reductive group schemes , 2010, 1005.2398.
[10] Richard Elman,et al. The Algebraic and Geometric Theory of Quadratic Forms , 2008 .
[11] R. Garibaldi. Structurable Algebras and Groups of Type E6 and E7 , 1998, math/9811035.
[12] R. Garibaldi. The Rost invariant has trivial kernel for quasi-split groups of low rank , 2000, math/0009162.
[13] Vladimir Voevodsky,et al. A1-homotopy theory of schemes , 1999 .
[14] R. Hoobler,et al. The Bloch-Ogus-Gabber theorem , 1996 .
[15] J. Colliot-Thélène,et al. Espaces principaux homogènes localement triviaux , 1992 .
[16] M. Raghunathan. Principal bundles on affine space and bundles on the projective line , 1989 .
[17] Sivaramakrishna Anantharaman. Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1 , 1973 .
[18] A. Białynicki-Birula. Rationally trivial homogeneous principal fibrations of schemes , 1970 .
[19] M. Demazure. Structure des schémas en groupes réductifs , 1970 .
[20] S. Lang,et al. Algebraic Groups Over Finite Fields , 1956 .