Affine representability results in A^1-homotopy theory III: finite fields and complements

We give a streamlined proof of ${\mathbb A}^1$-representability for $G$-torsors under "isotropic" reductive groups, extending previous results in this sequence of papers to finite fields. We then analyze a collection of group homomorphisms that yield fiber sequences in ${\mathbb A}^1$-homotopy theory, and identify the final examples of motivic spheres that arise as homogeneous spaces for reductive groups.

[1]  A. Hogadi,et al.  Gabber’s presentation lemma for finite fields , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).

[2]  A. Asok,et al.  Generically split octonion algebras and 𝔸1-homotopy theory , 2017, Algebra & Number Theory.

[3]  A. Asok,et al.  Affine representability results in 1–homotopy theory, II : Principal bundles and homogeneous spaces , 2015, 1507.08020.

[4]  B. Doran,et al.  Smooth Models of Motivic Spheres and the Clutching Construction , 2016 .

[5]  A. Asok,et al.  Affine representability results in A-homotopy theory I: vector bundles , 2016 .

[6]  I. Panin,et al.  A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields , 2012, 1211.2678.

[7]  B. Conrad Reductive Group Schemes , 2014 .

[8]  F. Morel A1-Algebraic Topology over a Field , 2012 .

[9]  J. Alper Adequate moduli spaces and geometrically reductive group schemes , 2010, 1005.2398.

[10]  Richard Elman,et al.  The Algebraic and Geometric Theory of Quadratic Forms , 2008 .

[11]  R. Garibaldi Structurable Algebras and Groups of Type E6 and E7 , 1998, math/9811035.

[12]  R. Garibaldi The Rost invariant has trivial kernel for quasi-split groups of low rank , 2000, math/0009162.

[13]  Vladimir Voevodsky,et al.  A1-homotopy theory of schemes , 1999 .

[14]  R. Hoobler,et al.  The Bloch-Ogus-Gabber theorem , 1996 .

[15]  J. Colliot-Thélène,et al.  Espaces principaux homogènes localement triviaux , 1992 .

[16]  M. Raghunathan Principal bundles on affine space and bundles on the projective line , 1989 .

[17]  Sivaramakrishna Anantharaman Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1 , 1973 .

[18]  A. Białynicki-Birula Rationally trivial homogeneous principal fibrations of schemes , 1970 .

[19]  M. Demazure Structure des schémas en groupes réductifs , 1970 .

[20]  S. Lang,et al.  Algebraic Groups Over Finite Fields , 1956 .