A conceptual frame with two neural mechanisms to model selective visual attention processes

An important problem in artificial intelligence (AI) is to find calculation procedures to save the semantic gap between the analytic formulations of the neuronal models and the concepts of the natural language used to describe the cognitive processes. In this work we explore a way of saving this gap for the case of the attentional processes, consisting in (1) proposing in first place a conceptual model of the attention double bottom-up/top-down organization, (2) proposing afterwards a neurophysiological model of the cortical and sub-cortical involved structures, (3) establishing the correspondences between the entities of (1) and (2), (4) operationalizing the model by using biologically inspired calculation mechanisms (algorithmic lateral inhibition and accumulative computation) formulated at symbolic level, and, (5) assessing the validity of the proposal by accommodating the works of the research team on diverse aspects of attention associated to visual surveillance tasks. The results obtained support in a reasonable way the validity of the proposal and enable its application in surveillance tasks different from the ones considered in this work. In particular, this is the case when linking the geometric descriptions of a scene with the corresponding activity level.

[1]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[2]  Antonio Fernández-Caballero,et al.  Length-speed ratio (LSR) as a characteristic for moving elements real-time classification , 2003, Real Time Imaging.

[3]  Senén Barro,et al.  Local Accumulation of Persistent Activity at Synaptic Level: Application to Motion Analysis , 1995, IWANN.

[4]  Antonio Fernández-Caballero,et al.  Segmentation from motion of non-rigid objects by neuronal lateral interaction , 2001, Pattern Recognit. Lett..

[5]  Ana E. Delgado García Modelos neurocibernéticos de dinámica cerebral , 1978 .

[6]  E. Rolls,et al.  A Neurodynamical cortical model of visual attention and invariant object recognition , 2004, Vision Research.

[7]  Antonio Fernández Caballero,et al.  Stereovision depth analysis by two-dimensional motion charge memories , 2007 .

[8]  G. Humphreys,et al.  Computational models of visual selective attention: A review , 2005 .

[9]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[10]  PIERRE VAN DE LAAR,et al.  Task-Dependent Learning of Attention , 1997, Neural Networks.

[11]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[12]  John K. Tsotsos,et al.  Attending to visual motion , 2005, Comput. Vis. Image Underst..

[13]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[14]  Fred Henrik Hamker,et al.  V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field , 2006, Neural Networks.

[15]  E. Rolls,et al.  Attention, short-term memory, and action selection: A unifying theory , 2005, Progress in Neurobiology.

[16]  Antonio Fernández-Caballero,et al.  On motion detection through a multi-layer neural network architecture , 2003, Neural Networks.

[17]  A. Parkin,et al.  Human memory , 1999, Current Biology.

[18]  Fred H Hamker,et al.  Modeling feature-based attention as an active top-down inference process. , 2006, Bio Systems.

[19]  Antonio Fernández-Caballero,et al.  A Model of Neural Inspiration for Local Accumulative Computation , 2003, EUROCAST.

[20]  F. Hamker A dynamic model of how feature cues guide spatial attention , 2004, Vision Research.

[21]  Stephen Grossberg,et al.  Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.

[22]  Roberto Moreno-Díaz,et al.  A Neurocybernetic Model of Modal Co‐operative Decisions in the Kilmer‐McCulloch Space , 1989 .

[23]  Thierry Pun,et al.  Attentive mechanisms for dynamic and static scene analysis , 1995 .

[24]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[25]  Jeremy M. Wolfe,et al.  An exact picture of your target guides visual search better than any other representation , 2010 .

[26]  Antonio Fernández-Caballero,et al.  Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation , 2003, Pattern Recognit..

[27]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[28]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[29]  Antonio R. Damasio,et al.  Cerebro y lenguaje , 1992 .

[30]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[31]  M. Fahle,et al.  The role of feedback in learning a vernier discrimination task , 1997, Vision Research.

[32]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[33]  Dietmar Heinke,et al.  Top-down guidance of visual search: A computational account , 2006 .

[34]  Dietmar Heinke,et al.  Modelling visual search experiments: the selective attention for identification model (SAIM) , 2002, Neurocomputing.

[35]  José Mira Mira,et al.  On Some of the Neural Mechanisms Underlying Adaptive Behavior , 2006, IDEAL.

[36]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[37]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  L. Itti,et al.  Modeling the influence of task on attention , 2005, Vision Research.

[39]  José Mira Mira,et al.  What Can We Compute with Lateral Inhibition Circuits? , 2001, IWANN.

[40]  Antonio Fernández-Caballero,et al.  Lateral interaction in accumulative computation: a model for motion detection , 2003, Neurocomputing.

[41]  J. Fuster The Prefrontal Cortex , 1997 .

[42]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[43]  C D Gilbert Learning and receptive field plasticity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Antonio Fernández-Caballero,et al.  Motion features to enhance scene segmentation in active visual attention , 2006, Pattern Recognit. Lett..

[45]  Jun Saiki,et al.  Stochastic Guided Search Model for Search Asymmetries in Visual Search Tasks , 2002, Biologically Motivated Computer Vision.

[46]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[47]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[48]  C. Gonnella The Working Brain: An Introduction to Neuropsychology , 1976 .

[49]  G. Backer,et al.  Two selection stages provide efficient object-based attentional control for dynamic vision , 2003 .

[50]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[51]  José Mira,et al.  ALGORITHMIC LATERAL INHIBITION AS A GENERIC METHOD FOR VISUAL INFORMATION PROCESSING WITH POTENTIAL APPLICATIONS IN ROBOTICS , 2002 .

[52]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[53]  Antonio Fernández-Caballero,et al.  Algorithmic Lateral Inhibition Formal Model for Real-Time Motion Detection , 2007, EUROCAST.

[54]  María Teresa López Bonal Modelado computacional de los mecanismos de atención selectiva mediante redes de interacción lateral , 2004 .

[55]  Guus Schreiber,et al.  Knowledge Engineering and Management: The CommonKADS Methodology , 1999 .

[56]  Harry Wechsler,et al.  A Dynamic and Multiresolution Model of Visual Attention and Its Application to Facial Landmark Detection , 1998, Comput. Vis. Image Underst..

[57]  J. Mira Preface: Mechanisms and formal tools in neural modeling: analytic and synthetic approaches , 2007 .

[58]  José Mira Mira,et al.  Permanence Memory: A System for Real Time Motion Analysis in Image Sequences , 1992, MVA.

[59]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[60]  Steven R. Holloway,et al.  Two cases requiring external reinforcement in perceptual learning. , 2006, Journal of vision.

[61]  J ValdésJulio,et al.  2006 Special issue , 2006 .

[62]  Antonio Fernández Caballero Modelos de interacción lateral en computación acumulativa para la obtención de siluetas , 2001 .

[63]  Miguel Angel Fernández Graciani Una arquitectura modular de inspiracion biológica con capacidad de aprendizaje para el análisis de movimiento en secuencias de imagen en tiempo real , 1996 .

[64]  Antonio Fernández-Caballero,et al.  Algorithmic lateral inhibition method in dynamic and selective visual attention task: Application to moving objects detection and labelling , 2006, Expert Syst. Appl..

[65]  Wei Zhang,et al.  The Role of Top-down and Bottom-up Processes in Guiding Eye Movements during Visual Search , 2005, NIPS.

[66]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[67]  Lambert Spaanenburg,et al.  COMPUTATIONAL INTELLIGENT SYSTEMS FOR APPLIED RESEARCH , 2002 .

[68]  José Mira Mira,et al.  On how the computational paradigm can help us to model and interpret the neural function , 2007, Natural Computing.

[69]  Xin Chen,et al.  Real-world visual search is dominated by top-down guidance , 2006, Vision Research.

[70]  Andrew B. Leber,et al.  Made you blink! Contingent attentional capture produces a spatial blink , 2002, Perception & psychophysics.

[71]  Fred Henrik Hamker,et al.  The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision , 2005, Comput. Vis. Image Underst..

[72]  R. H. Phaf,et al.  SLAM: A connectionist model for attention in visual selection tasks , 1990, Cognitive Psychology.

[73]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[74]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.

[75]  A. Luria The Working Brain: An Introduction To Neuropsychology , 1976 .

[76]  G. Bower,et al.  THE PSYCHOLOGY OF LEARNING AND M·OTIVATION , 2001 .

[77]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.