The multipoint Morisita index for the analysis of spatial patterns

[1]  Devis Tuia,et al.  Active learning for monitoring network optimization , 2012 .

[2]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[3]  L. Seuront Fractals and Multifractals in Ecology and Aquatic Science , 2009 .

[4]  Alexei Pozdnoukhov,et al.  Machine Learning for Spatial Environmental Data: Theory, Applications, and Software , 2009 .

[5]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[6]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[7]  Devis Tuia,et al.  Clustering in Environmental Monitoring Networks: Dimensional Resolutions and Pattern Detection , 2008 .

[8]  M. Galetti,et al.  Seed dispersal and spatial distribution of Attalea geraensis (Arecaceae) in two remnants of Cerrado in Southeastern Brazil , 2007 .

[9]  B. Wandelt Statistical Physics for Cosmic Structures , 2006 .

[10]  Edmund Perfect,et al.  Multifractal Sierpinski carpets: Theory and application to upscaling effective saturated hydraulic conductivity , 2006 .

[11]  P. Grujić Statistical physics for cosmic structures; A. Gabrielli, F. Sylos Labini, M. Joyce and L. Pietronero; Springer, Berlin, 2005 , 2006 .

[12]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[13]  S. Shaukat,et al.  Spatial pattern analysis of seeds of an arable soil seed bank and its relationship with above-ground vegetation in an arid region , 2004 .

[14]  M. Kanevski,et al.  Analysis and modelling of spatial environmental data , 2004 .

[15]  Michael S. Rosenberg,et al.  Conceptual and Mathematical Relationships among Methods for Spatial Analysis , 2022 .

[16]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[17]  Clayton V. Deutsch,et al.  Geostatistical Software Library and User's Guide , 1998 .

[18]  Q. Cheng Multifractal Modeling and Lacunarity Analysis , 1997 .

[19]  G Salvadori,et al.  Fractal and multifractal approach to environmental pollution , 1997, Environmental science and pollution research international.

[20]  W. B. Marks,et al.  Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals , 1996, Journal of Neuroscience Methods.

[21]  W. Hargrove,et al.  Lacunarity analysis: A general technique for the analysis of spatial patterns. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Benoit B. Mandelbrot,et al.  A Fractal’s Lacunarity, and how it can be Tuned and Measured , 1994 .

[23]  Borgani,et al.  Multifractal analysis of the galaxy distribution: Reliability of results from finite data sets. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[25]  C. Allain,et al.  Characterizing the lacunarity of random and deterministic fractal sets. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[26]  S. Hurlbert Spatial distribution of the montane unicorn , 1990 .

[27]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[28]  T. Vicsek,et al.  Determination of fractal dimensions for geometrical multifractals , 1989 .

[29]  W. B. Marks,et al.  A fractal analysis of cell images , 1989, Journal of Neuroscience Methods.

[30]  A. Vulpiani,et al.  Anomalous scaling laws in multifractal objects , 1987 .

[31]  D. Schertzer,et al.  Functional Box-Counting and Multiple Elliptical Dimensions in Rain , 1987, Science.

[32]  Toru Ouchi,et al.  Statistical analysis of the spatial distribution of earthquakes—variation of the spatial distribution of earthquakes before and after large earthquakes , 1986 .

[33]  S. Lovejoy,et al.  Fractal characterization of inhomogeneous geophysical measuring networks , 1986, Nature.

[34]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[35]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[36]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[37]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[38]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[39]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .

[40]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[41]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[42]  M. Morisita Measuring of dispersion of individuals and analysis of the distributional patterns. , 1961 .

[43]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.