Approximation algorithms for combinatorial auctions with complement-free bidders

We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items $m$ and in the number of bidders n, even though the "input size" is exponential in m. The first algorithm provides an O(log m) approximation. The second algorithm provides an O(√ m) approximation in the weaker model of value oracles. This algorithm is also incentive compatible. The third algorithm provides an improved 2-approximation for the more restricted case of "XOS bidders", a class which strictly contains submodular bidders. We also prove lower bounds on the possible approximations achievable for these classes of bidders. These bounds are not tight and we leave the gaps as open problems.

[1]  Aranyak Mehta,et al.  Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions , 2005, Algorithmica.

[2]  Noam Nisany,et al.  The Communication Requirements of E¢cient Allocations and Supporting Lindahl Prices¤ , 2003 .

[3]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[4]  M. Mitzenmacher,et al.  Probability and Computing: Chernoff Bounds , 2005 .

[5]  N. Nisan,et al.  On the Computational Power of Iterative Auctions I: Demand Queries , 2005 .

[6]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[7]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[8]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..

[9]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[10]  Noam Nisan,et al.  Truthful randomized mechanisms for combinatorial auctions , 2006, STOC '06.

[11]  Éva Tardos,et al.  An approximate truthful mechanism for combinatorial auctions with single parameter agents , 2003, SODA '03.

[12]  Noga Alon,et al.  The Space Complexity of Approximating the Frequency Moments , 1999 .

[13]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[14]  Uriel Feige,et al.  Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[15]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[16]  D. Sivakumar Algorithmic derandomization via complexity theory , 2002, STOC '02.

[17]  Shahar Dobzinski,et al.  Two Randomized Mechanisms for Combinatorial Auctions , 2007, APPROX-RANDOM.

[18]  Noam Nisan,et al.  On the computational power of iterative auctions , 2005, EC '05.

[19]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[20]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[21]  Noam Nisan,et al.  Incentive compatible multi unit combinatorial auctions , 2003, TARK '03.

[22]  N. Nisan Introduction to Mechanism Design (for Computer Scientists) , 2007 .

[23]  Noam Nisan,et al.  Limitations of VCG-based mechanisms , 2007, STOC '07.

[24]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[25]  Noam Nisan,et al.  Computationally feasible VCG mechanisms , 2000, EC '00.

[26]  Yoav Shoham,et al.  Truth revelation in approximately efficient combinatorial auctions , 2002, EC '99.

[27]  Moshe Tennenholtz,et al.  Bundling equilibrium in combinatorial auctions , 2002, Games Econ. Behav..

[28]  Noam Nisan,et al.  Computationally feasible vcg-based mechanisms , 2000 .

[29]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[30]  Noam Nisan,et al.  The Communication Complexity of Approximate Set Packing and Covering , 2002, ICALP.

[31]  Avi Wigderson,et al.  Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing , 1992, Symposium on the Theory of Computing.

[32]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.

[33]  Noam Nisan,et al.  RL⊆SC , 1992, STOC '92.