Experimental progress in the measurement and control of single atom trajectory

In this review article, the progress and recent developments in the measuring and controlling of single atom trajectories are reviewed. With the development of laser cooling and trapping technology, it is possible to achieve the measurement and control of single atom trajectory experimentally. The experiment of tracking a single atom trajectory with high resolution and the endeavor of eliminating the degeneracy of the trajectories are then introduced.

[1]  Tiancai Zhang,et al.  Extending the trapping lifetime of single atom in a microscopic far-off-resonance optical dipole trap , 2011 .

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  Jun He,et al.  Efficient extension of the trapping lifetime of single atoms in an optical tweezer by laser cooling , 2011 .

[4]  H. Mabuchi,et al.  Real-time detection of individual atoms falling through a high-finesse optical cavity. , 1996, Optics letters.

[5]  Axel Kuhn,et al.  Kuhn, Hennrich, and Rempe Reply to Comment on "Deterministic single-photon source for distributed quantum networking" , 2002 .

[6]  G. Rempe,et al.  Feedback on the motion of a single atom in an optical cavity. , 2002, Physical review letters.

[7]  G. Rempe,et al.  Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity , 1999 .

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[10]  G. Rempe,et al.  How to catch an atom with single photons , 2000 .

[11]  Meschede,et al.  One-atom maser. , 1985, Physical review letters.

[12]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[13]  Christoph Becher,et al.  Feedback cooling of a single trapped ion. , 2006, Physical review letters.

[14]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[15]  Submicron positioning of single atoms in a microcavity. , 2005, Physical review letters.

[16]  Gang Li,et al.  Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode , 2010 .

[17]  N V Morrow,et al.  Feedback control of atomic motion in an optical lattice. , 2002, Physical review letters.

[18]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[19]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[20]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[21]  Guo Yan-qiang,et al.  Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System , 2011 .

[22]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[23]  Thomas Legero,et al.  Quantum beat of two single photons. , 2004, Physical review letters.

[24]  E. Schrödinger,et al.  ARE THERE QUANTUM JUMPS? , 1952, The British Journal for the Philosophy of Science.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[27]  Dieter Meschede,et al.  Deterministic Delivery of a Single Atom , 2001, Science.

[28]  P Grangier,et al.  Collisional blockade in microscopic optical dipole traps. , 2002, Physical review letters.

[29]  E. Brändas,et al.  Modern studies of basic quantum concepts and phenomena : proceedings of Nobel Symposium 104, Gimo, Sweden, June 13-17, 1997 , 1998 .

[30]  D Meschede,et al.  Submicrometer position control of single trapped neutral atoms. , 2005, Physical review letters.

[31]  Hood,et al.  The atom-cavity microscope: single atoms bound in orbit by single photons , 2000, Science.

[32]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[33]  M. Chapman,et al.  Deterministic loading of individual atoms to a high-finesse optical cavity. , 2007, Physical review letters.

[34]  Gang Li,et al.  Experimental progress in optical manipulation of single atoms for cavity QED , 2009 .

[35]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[36]  Pepijn W. H. Pinkse,et al.  Feedback control of a single atom in an optical cavity , 2011 .

[37]  Tiancai Zhang,et al.  Temperature determination of cold atoms based on single-atom countings , 2011 .

[38]  Carmichael,et al.  Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. , 1989, Physical review letters.

[39]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[40]  G. Rempe,et al.  Single slow atoms from an atomic fountain observed in a high-finesse optical cavity , 1999 .

[41]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[42]  P. Maunz,et al.  Single-Atom Trajectories in Higher-Order Transverse Modes of a High-Finesse Optical Cavity , 2003 .

[43]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[44]  C. Hamley,et al.  Cavity QED with optically transported atoms , 2003, quant-ph/0309052.

[45]  H. Kimble,et al.  Squeezed-state generation in optical bistability , 1987 .

[46]  P. Maunz,et al.  Trapping an atom with single photons , 2000, Nature.

[47]  Dallin S. Durfee,et al.  Propagation of Sound in a Bose-Einstein Condensate , 1997 .

[48]  P. Horák,et al.  Cavity-Induced Atom Cooling in the Strong Coupling Regime , 1997 .

[49]  J. Raimond,et al.  Trapping atoms by the vacuum field in a cavity , 1991 .

[50]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[51]  T Schneider,et al.  Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions. , 2005, Physical review letters.

[52]  C. J. Hood,et al.  Real-Time Cavity QED with Single Atoms , 1998 .

[53]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[54]  Kyungwon An,et al.  Definitive number of atoms on demand: Controlling the number of atoms in a few-atom magneto-optical trap , 2006 .

[55]  G. Rempe,et al.  Feedback cooling of a single neutral atom , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[56]  Davidovich,et al.  Realization of a two-photon maser oscillator. , 1987, Physical review letters.

[57]  Strategies for real-time position control of a single atom in cavity QED , 2005, quant-ph/0507064.

[58]  T. Wilk,et al.  Single-Atom Single-Photon Quantum Interface , 2007, Science.

[59]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[60]  Photon-by-photon feedback control of a single-atom trajectory , 2009, Nature.