Molecular recognition and docking algorithms.

Molecular docking is an invaluable tool in modern drug discovery. This review focuses on methodological developments relevant to the field of molecular docking. The forces important in molecular recognition are reviewed and followed by a discussion of how different scoring functions account for these forces. More recent applications of computational chemistry tools involve library design and database screening. Last, we summarize several critical methodological issues that must be addressed in future developments.

[1]  Jonathan D. Hirst,et al.  Assessing search strategies for flexible docking , 1998 .

[2]  I D Kuntz,et al.  Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. , 1997, Chemistry & biology.

[3]  Gennady Verkhivker,et al.  Deciphering common failures in molecular docking of ligand-protein complexes , 2000, J. Comput. Aided Mol. Des..

[4]  Yuan-Ping Pang,et al.  EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases , 2001, J. Comput. Chem..

[5]  M Rarey,et al.  Detailed analysis of scoring functions for virtual screening. , 2001, Journal of medicinal chemistry.

[6]  A. N. Jain,et al.  Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. , 1996, Chemistry & biology.

[7]  Z. Xiang,et al.  On the role of the crystal environment in determining protein side-chain conformations. , 2002, Journal of molecular biology.

[8]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[9]  P. Kollman,et al.  Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate−DNA Helices , 1998 .

[10]  M. Sternberg,et al.  Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. , 1998, Journal of molecular biology.

[11]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[12]  D J Diller,et al.  High throughput docking for library design and library prioritization , 2001, Proteins.

[13]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[14]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[15]  John Marelius,et al.  Calculation of Ligand Binding Free Energies from Molecular Dynamics Simulations , 1998 .

[16]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[17]  I. Kuntz,et al.  Ligand solvation in molecular docking , 1999, Proteins.

[18]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[19]  M L Lamb,et al.  Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method. , 1998, Journal of medicinal chemistry.

[20]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[21]  Yvonne C. Martin,et al.  Use of Structure-Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection , 1996, J. Chem. Inf. Comput. Sci..

[22]  John Bradshaw,et al.  The Effectiveness of Reactant Pools for Generating Structurally-Diverse Combinatorial Libraries , 1997, J. Chem. Inf. Comput. Sci..

[23]  Christopher W. Murray,et al.  The sensitivity of the results of molecular docking to induced fit effects: Application to thrombin, thermolysin and neuraminidase , 1999, J. Comput. Aided Mol. Des..

[24]  Johan Åqvist,et al.  Ligand binding affinity prediction by linear interaction energy methods , 1998, J. Comput. Aided Mol. Des..

[25]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[26]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[27]  Michael K. Gilson,et al.  ''Mining minima'': Direct computation of conformational free energy , 1997 .

[28]  D. Case,et al.  Generalized born models of macromolecular solvation effects. , 2000, Annual review of physical chemistry.

[29]  J. Mccammon,et al.  Computational drug design accommodating receptor flexibility: the relaxed complex scheme. , 2002, Journal of the American Chemical Society.

[30]  E. Shakhnovich,et al.  Analysis of knowledge‐based protein‐ligand potentials using a self‐consistent method , 2008, Protein science : a publication of the Protein Society.

[31]  E. Shakhnovich,et al.  SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. , 2002, Journal of medicinal chemistry.

[32]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[33]  W. L. Jorgensen,et al.  Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density , 1998 .

[34]  Michael W. Mahoney,et al.  Diffusion constant of the TIP5P model of liquid water , 2001 .

[35]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[36]  I. Kuntz,et al.  Inclusion of Solvation in Ligand Binding Free Energy Calculations Using the Generalized-Born Model , 1999 .

[37]  S. Kim,et al.  "Soft docking": matching of molecular surface cubes. , 1991, Journal of molecular biology.

[38]  Gerhard Klebe,et al.  Recent developments in structure-based drug design , 2000, Journal of Molecular Medicine.

[39]  Malin M. Young,et al.  Design, docking, and evaluation of multiple libraries against multiple targets , 2001, Proteins.

[40]  Andreas Plückthun,et al.  Docking small ligands in flexible binding sites , 1998 .

[41]  Todd J. A. Ewing,et al.  DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases , 2001, J. Comput. Aided Mol. Des..

[42]  I. Kuntz,et al.  Conformational analysis of flexible ligands in macromolecular receptor sites , 1992 .

[43]  Janet M. Thornton,et al.  BLEEP - potential of mean force describing protein-ligand interactions: I. Generating potential , 1999, J. Comput. Chem..

[44]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[45]  B. Shoichet,et al.  Flexible ligand docking using conformational ensembles , 1998, Protein science : a publication of the Protein Society.

[46]  David A. Case,et al.  Effective Born radii in the generalized Born approximation: The importance of being perfect , 2002, J. Comput. Chem..

[47]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[48]  M J Sternberg,et al.  Empirical scale of side-chain conformational entropy in protein folding. , 1993, Journal of molecular biology.

[49]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[50]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[51]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[52]  I. Kuntz,et al.  Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. , 1988, Journal of medicinal chemistry.

[53]  P. Kollman,et al.  Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation , 2002, Proteins.

[54]  B. Bush,et al.  Macromolecular shape and surface maps by solvent exclusion. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Goodsell,et al.  Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock , 2002, Proteins.

[56]  R M Knegtel,et al.  Efficacy and selectivity in flexible database docking , 1999, Proteins.

[57]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[58]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[59]  I. Kuntz,et al.  Flexible ligand docking: A multistep strategy approach , 1999, Proteins.

[60]  E. Freire,et al.  Direct measurement of protein binding energetics by isothermal titration calorimetry. , 2001, Current opinion in structural biology.

[61]  L. Pauling,et al.  THE NATURE OF THE INTERMOLECULAR FORCES OPERATIVE IN BIOLOGICAL PROCESSES. , 1940, Science.

[62]  Fenglou Mao,et al.  Potential of mean force for protein–protein interaction studies , 2002, Proteins.

[63]  T. L. Blundell,et al.  DOCKER, an interactive program for simulating protein receptor and substrate interactions , 1983 .

[64]  I D Kuntz,et al.  Inhibitors of kinesin activity from structure-based computer screening. , 2000, Biochemistry.

[65]  Janet M. Thornton,et al.  BLEEP—potential of mean force describing protein–ligand interactions: I. Generating potential , 1999 .

[66]  I. Kuntz,et al.  Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Peter A. Kollman,et al.  Computational alanine scanning of the 1:1 human growth hormone–receptor complex , 2002, J. Comput. Chem..

[68]  C. Lipinski Drug-like properties and the causes of poor solubility and poor permeability. , 2000, Journal of pharmacological and toxicological methods.

[69]  Richard S. Judson,et al.  Docking flexible molecules: A case study of three proteins , 1995, J. Comput. Chem..

[70]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[71]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[72]  A. Kidera,et al.  Multicanonical Ensemble Generated by Molecular Dynamics Simulation for Enhanced Conformational Sampling of Peptides , 1997 .

[73]  S. Wodak,et al.  Hemoglobin interaction in sickle cell fibers. I: Theoretical approaches to the molecular contacts. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[74]  E. Alexov,et al.  Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. , 2002, Biophysical journal.

[75]  F R Salemme,et al.  An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. , 1976, Journal of molecular biology.

[76]  Nobuo Tomioka,et al.  A method for fast energy estimation and visualization of protein-ligand interaction , 1987, J. Comput. Aided Mol. Des..

[77]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[78]  I. Kuntz,et al.  Molecular docking to ensembles of protein structures. , 1997, Journal of molecular biology.

[79]  H A Scheraga,et al.  Reaching the global minimum in docking simulations: a Monte Carlo energy minimization approach using Bezier splines. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Yvonne C. Martin,et al.  The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding , 1997, J. Chem. Inf. Comput. Sci..

[81]  A Caflisch,et al.  Monte Carlo docking of oligopeptides to proteins , 1992, Proteins.

[82]  Marvin Waldman,et al.  Evaluation of Reagent-Based and Product-Based Strategies in the Design of Combinatorial Library Subsets , 2000, J. Chem. Inf. Comput. Sci..

[83]  Youngshang Pak,et al.  Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems , 2000 .

[84]  P. Kollman,et al.  Solvation Model Based on Weighted Solvent Accessible Surface Area , 2001 .

[85]  J. Åqvist,et al.  Calculation of absolute binding free energies for charged ligands and effects of long‐range electrostatic interactions , 1996 .

[86]  Rebecca C. Wade,et al.  COMPUTATIONAL ALCHEMY TO CALCULATE ABSOLUTE PROTEIN-LIGAND BINDING FREE ENERGY , 1998 .

[87]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[88]  Haruki Nakamura,et al.  Flexible docking of a ligand peptide to a receptor protein by multicanonical molecular dynamics simulation , 1997 .

[89]  Paul S. Charifson,et al.  Practical Application of Computer-Aided Drug Design , 1997 .

[90]  D. Rognan,et al.  Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. , 2000, Journal of medicinal chemistry.

[91]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.

[92]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[93]  Tudor I. Oprea Current trends in lead discovery: Are we looking for the appropriate properties? , 2002, J. Comput. Aided Mol. Des..

[94]  R. Clark,et al.  Consensus scoring for ligand/protein interactions. , 2002, Journal of molecular graphics & modelling.

[95]  Charles L. Brooks,et al.  Assessing energy functions for flexible docking , 1998 .

[96]  Heather A. Carlson,et al.  Free energies of solvation in chloroform and water from a linear response approach , 1997 .

[97]  Alexander A. Rashin,et al.  Hydration phenomena, classical electrostatics, and the boundary element method , 1990 .

[98]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Ingo Muegge,et al.  Evaluation of docking/scoring approaches: A comparative study based on MMP3 inhibitors , 2000, J. Comput. Aided Mol. Des..

[100]  A Aitken,et al.  Expression and structural analysis of 14-3-3 proteins. , 1995, Journal of molecular biology.

[101]  E. Shakhnovich,et al.  SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates. 1. Methodology and Supporting Evidence , 1996 .

[102]  Shaomeng Wang,et al.  MCDOCK: A Monte Carlo simulation approach to the molecular docking problem , 1999, J. Comput. Aided Mol. Des..

[103]  Y. Martin,et al.  A general and fast scoring function for protein-ligand interactions: a simplified potential approach. , 1999, Journal of medicinal chemistry.

[104]  I D Kuntz,et al.  Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity , 1997, Journal of virology.

[105]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[106]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[107]  J. Aqvist,et al.  A new method for predicting binding affinity in computer-aided drug design. , 1994, Protein engineering.

[108]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[109]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[110]  H J Berendsen,et al.  Molecular dynamics simulation of the docking of substrates to proteins , 1994, Proteins.

[111]  William L. Jorgensen,et al.  Validation of a Model for the Complex of HIV-1 Reverse Transcriptase with Sustiva through Computation of Resistance Profiles , 2000 .

[112]  Bin Xia,et al.  Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water , 2002, Journal of biomolecular NMR.

[113]  S Vajda,et al.  Prediction of protein complexes using empirical free energy functions , 1996, Protein science : a publication of the Protein Society.

[114]  Thomas E. Ferrin,et al.  Computer graphics in real‐time docking with energy calculation and minimization , 1985 .

[115]  P. Kollman,et al.  Investigating the binding specificity of U1A-RNA by computational mutagenesis. , 2000, Journal of molecular biology.

[116]  Irwin D Kuntz,et al.  Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. , 2003, Biopolymers.

[117]  Thomas Lengauer,et al.  FlexE: efficient molecular docking considering protein structure variations. , 2001, Journal of molecular biology.

[118]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.

[119]  P. Kollman,et al.  Computational Alanine Scanning To Probe Protein−Protein Interactions: A Novel Approach To Evaluate Binding Free Energies , 1999 .

[120]  A. di Nola,et al.  Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation , 1999, Proteins.

[121]  Robert P. Sheridan,et al.  Flexibases: A way to enhance the use of molecular docking methods , 1994, J. Comput. Aided Mol. Des..

[122]  Thomas Lengauer,et al.  Placement of medium-sized molecular fragments into active sites of proteins , 1996, J. Comput. Aided Mol. Des..

[123]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[124]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[125]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[126]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[127]  C. Milstein,et al.  Conformational isomerism and the diversity of antibodies. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[128]  J. Janin,et al.  Computer studies of interactions between macromolecules. , 1987, Progress in biophysics and molecular biology.

[129]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[130]  Peter A. Kollman,et al.  A Ligand That Is Predicted to Bind Better to Avidin than Biotin: Insights from Computational Fluorine Scanning , 2000 .

[131]  M. Karplus,et al.  Docking by Monte Carlo minimization with a solvation correction: Application to an FKBP—substrate complex , 1997 .

[132]  P. Kollman,et al.  Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. , 2001, Journal of the American Chemical Society.

[133]  A. Leach,et al.  Ligand docking to proteins with discrete side-chain flexibility. , 1994, Journal of molecular biology.

[134]  Piotr Cieplak,et al.  Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. , 2002, Journal of medicinal chemistry.

[135]  Harold A. Scheraga,et al.  Prodock: Software package for protein modeling and docking , 1999 .

[136]  J. Janin,et al.  Computer analysis of protein-protein interaction. , 1978, Journal of molecular biology.

[137]  I. Kuntz,et al.  Docking flexible ligands to macromolecular receptors by molecular shape. , 1986, Journal of medicinal chemistry.

[138]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[139]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[140]  Ruhong Zhou,et al.  New Linear Interaction Method for Binding Affinity Calculations Using a Continuum Solvent Model , 2001 .

[141]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[142]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[143]  Jan Hermans,et al.  Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model , 1998, Proteins.

[144]  Gennady M Verkhivker,et al.  Predicting structural effects in HIV‐1 protease mutant complexes with flexible ligand docking and protein side‐chain optimization , 1998, Proteins.

[145]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.