Adaptive Steganalysis of Least Significant Bit Replacement in Grayscale Natural Images

This paper deals with the detection of hidden bits in the Least Significant Bit (LSB) plane of a natural image. The mean level and the covariance matrix of the image, considered as a quantized Gaussian random matrix, are unknown. An adaptive statistical test is designed such that its probability distribution is always independent of the unknown image parameters, while ensuring a high probability of hidden bits detection. This test is based on the likelihood ratio test except that the unknown parameters are replaced by estimates based on a local linear regression model. It is shown that this test maximizes the probability of detection as the image size becomes arbitrarily large and the quantization step vanishes. This provides an asymptotic upper-bound for the detection of hidden bits based on the LSB replacement mechanism. Numerical results on real natural images show the relevance of the method and the sharpness of the asymptotic expression for the probability of detection.

[1]  B. S. Manjunath,et al.  Detection of hiding in the least significant bit , 2004, IEEE Transactions on Signal Processing.

[2]  Jessica J. Fridrich,et al.  Reliable detection of LSB steganography in color and grayscale images , 2001, MM&Sec '01.

[3]  Andrew D. Ker A General Framework for Structural Steganalysis of LSB Replacement , 2005, Information Hiding.

[4]  Jessica Fridrich,et al.  Steganography in Digital Media: References , 2009 .

[5]  Florent Retraint,et al.  Statistical decision by using quantized observations , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[6]  Sorina Dumitrescu,et al.  Detection of LSB steganography via sample pair analysis , 2002, IEEE Trans. Signal Process..

[7]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[8]  Xiangyang Luo,et al.  An Improved Sample Pairs Method for Detection of LSB Embedding , 2004, Information Hiding.

[9]  Niels Provos,et al.  Hide and Seek: An Introduction to Steganography , 2003, IEEE Secur. Priv..

[10]  Andrew D. Ker Locating steganographic payload via ws residuals , 2008, MM&Sec '08.

[11]  D. M. Hutton,et al.  Data Hiding Fundamentals and Applications: Content Security in Digital Multimedia , 2005 .

[12]  Andrew D. Ker Steganalysis of LSB matching in grayscale images , 2005, IEEE Signal Processing Letters.

[13]  Rainer Bhme Advanced Statistical Steganalysis , 2010 .

[14]  Christopher G. Small,et al.  Expansions and Asymptotics for Statistics , 2010 .

[15]  David L. Neuhoff,et al.  Asymptotic analysis of optimal fixed-rate uniform scalar quantization , 2001, IEEE Trans. Inf. Theory.

[16]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[17]  Jessica J. Fridrich,et al.  Detecting LSB Steganography in Color and Gray-Scale Images , 2001, IEEE Multim..

[18]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[19]  Teruo Fujioka,et al.  ASYMPTOTIC APPROXIMATIONS OF THE INVERSE MOMENT OF THE NONCENTRAL CHI-SQUARED VARIABLE , 2001 .

[20]  Rainer Böhme,et al.  Advanced Statistical Steganalysis , 2010, Information Security and Cryptography.

[21]  Florent Retraint,et al.  A Cover Image Model For Reliable Steganalysis , 2011, Information Hiding.

[22]  Sangjin Lee,et al.  Generalised Category Attack - Improving Histogram-Based Attack on JPEG LSB Embedding , 2007, Information Hiding.

[23]  Rainer Böhme,et al.  Revisiting weighted stego-image steganalysis , 2008, Electronic Imaging.

[24]  Florent Retraint,et al.  Reliable detection of hidden information based on a non-linear local model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[25]  W.E. Snyder,et al.  Color image processing pipeline , 2005, IEEE Signal Processing Magazine.

[26]  Jaakko Astola,et al.  Local Approximation Techniques in Signal and Image Processing (SPIE Press Monograph Vol. PM157) , 2006 .

[27]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[28]  Fenlin Liu,et al.  A review on blind detection for image steganography , 2008, Signal Process..

[29]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[30]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[32]  A. Sripad,et al.  A necessary and sufficient condition for quantization errors to be uniform and white , 1977 .

[33]  J. Norris Appendix: probability and measure , 1997 .

[34]  Richard K. Burdick Linear Models in Statistics , 2001, Technometrics.

[35]  Andrew D. Ker The square root law does not require a linear key , 2010, MM&Sec '10.

[36]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[37]  Andreas Pfitzmann,et al.  Attacks on Steganographic Systems , 1999, Information Hiding.

[38]  Florent Retraint,et al.  Statistical Decision Methods in Hidden Information Detection , 2011, Information Hiding.

[39]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[40]  Andrew D. Ker A Fusion of Maximum Likelihood and Structural Steganalysis , 2007, Information Hiding.

[41]  Jiaohua Qin,et al.  A Review on Detection of LSB Matching Steganography , 2010 .

[42]  Florent Retraint,et al.  Hypothesis testing by using quantized observations , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[43]  Ingemar J. Cox,et al.  Digital Watermarking and Steganography , 2014 .

[44]  Jessica J. Fridrich,et al.  On estimation of secret message length in LSB steganography in spatial domain , 2004, IS&T/SPIE Electronic Imaging.

[45]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[46]  Florent Retraint,et al.  $\varepsilon$ -Optimal Non-Bayesian Anomaly Detection for Parametric Tomography , 2008, IEEE Transactions on Image Processing.

[47]  Ajaz Hussain Mir,et al.  Classification of steganalysis techniques: A study , 2010, Digit. Signal Process..

[48]  Igor V. Nikiforov,et al.  Non-Bayesian Detection and Detectability of Anomalies From a Few Noisy Tomographic Projections , 2007, IEEE Transactions on Signal Processing.