Chain length dependence of static longitudinal polarizabilities and hyperpolarizabilities in linear polyynes

Ab initio calculations of the static longitudinal dipole polarizability αL and second dipole hyperpolarizability γL are reported for the linear C2nH2 polyynes up to C44H2 . Basis set requirements diminish with increasing chain length. The intermediate neglect of differential overlap (INDO) method is able to mimic the ab initio results if the Ohno–Klopman parameterization is used. The values per acetylenic linkage, αL/n and γL/n, converge very slowly with chain length; they are extrapolated to the infinite chain limit.

[1]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[2]  C. Roothaan,et al.  Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems , 1965 .

[3]  Manthos G. Papadopoulos,et al.  Calculations of induced moments in large molecules. II. Polarizabilities and second hyperpolarizabilities of some polyenes , 1982 .

[4]  J. Zyss,et al.  Prediction of longitudinal electric polarizabilities of conjugated chain molecules by scaling of ab initio calculations , 1985 .

[5]  H. F. King,et al.  Ab initio calculations of polarizabilities and second hyperpolarizabilities in organic molecules with extended .pi.-electron conjugation , 1989 .

[6]  P. Prasad,et al.  Dispersion of linear and nonlinear optical properties of benzene: An ab initio time‐dependent coupled‐perturbed Hartree–Fock study , 1991 .

[7]  A. Thakkar,et al.  How important is electron correlation for the hyperpolarizability of ethyne , 1990 .

[8]  Michel Dupuis,et al.  Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6 to C22H24 , 1988 .

[9]  G. Klopman,et al.  A semiempirical treatment of molecular structures. II. Molecular terms and application to diatomic molecules , 1964 .

[10]  A. Thakkar,et al.  Static hyperpolarizabilities and polarizabilities of linear polyynes , 1991 .

[11]  B. Kirtman,et al.  Ab initio longitudinal polarizabilities and hyperpolarizabilities of polydiacetylene and polybutatriene oligomers , 1989 .

[12]  B. Kirtman Finite chain approximation for linear and nonlinear polarizabilities of polydiacetylene and polybutatriene , 1989 .

[13]  Werner J. Blau,et al.  Organic materials for nonlinear optical devices , 1987 .

[14]  A. D. McLean,et al.  Theory of Molecular Polarizabilities , 1967 .

[15]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[16]  G. Diercksen,et al.  Polarisabilities of triply bonded molecules: The 14- and 26-electron systems CN−, N2, HCN, C2H2, C2N2, HC3N and C4H2 , 1990 .

[17]  N. Mataga,et al.  Electronic Structure and Spectra of Some Nitrogen Heterocycles , 1957 .

[18]  C. E. Dykstra Ab Initio Calculation of the Structures and Properties of Molecules , 1988 .

[19]  J. Delhalle,et al.  Quantum chemistry and molecular engineering of oligomeric and polymeric materials for optoelectronics , 1991 .

[20]  A. Dalgarno,et al.  On the Orthogonality Problem for Excited States , 1963 .

[21]  Substituent effects on the acidity of the acetylenic proton: An ab initio study , 1983 .

[22]  P. Fowler,et al.  An ab initio study of the molecular electric polarizabilities of N2, HCN, acetylene, and diacetylene , 1986 .

[23]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[24]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[25]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[26]  Jean-Luc Brédas,et al.  Conjugated polymeric materials : opportunities in electronics, optoelectronics and molecular electronics , 1990 .

[27]  B. Stoicheff,et al.  HIGH RESOLUTION RAMAN SPECTROSCOPY OF GASES: VIII. ROTATIONAL SPECTRA OF ACETYLENE, DIACETYLENE, DIACETYLENE-d2, AND DIMETHYLACETYLENE , 1957 .

[28]  B. Kirtman Nonlinear optical properties of conjugated polymers from ab initio finite oligomer calculations , 1992 .