Optimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions

Abstract We consider the optimal convergence rates of the semidiscrete finite element approximations for solving linear space-fractional partial differential equations by using the regularity results for the fractional elliptic problems obtained recently by Jin et al. (2015) and Ervin et al. (2018). The error estimates are proved by using two approaches. One approach is to apply the duality argument in Johnson (1987) for the heat equation to consider the error estimates for the linear space-fractional partial differential equations. This argument allows us to obtain the optimal convergence rates under the minimal regularity assumptions for the solution. Another approach is to use the approximate solution operators of the corresponding fractional elliptic problems. This argument can be extended to consider more general linear space-fractional partial differential equations. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

[1]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[3]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[4]  Yubin Yan,et al.  Stability of a Numerical Method for a Space-time-fractional Telegraph Equation , 2012, Comput. Methods Appl. Math..

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  Fawang Liu,et al.  A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements , 2018, Commun. Nonlinear Sci. Numer. Simul..

[7]  Zhiqiang Li,et al.  High-Order Numerical Methods for Solving Time Fractional Partial Differential Equations , 2017, J. Sci. Comput..

[8]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[9]  A. M. Mathai,et al.  On generalized fractional kinetic equations , 2004 .

[10]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[11]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[12]  Santos B. Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001 .

[13]  Bruce J. West,et al.  Fractional Langevin model of memory in financial markets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[15]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[16]  Zhiping Mao,et al.  A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative , 2018, SIAM J. Numer. Anal..

[17]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[18]  Norbert Heuer,et al.  Regularity of the solution to 1-D fractional order diffusion equations , 2016, Math. Comput..

[19]  Kamal Pal,et al.  An Algorithm for the Numerical Solution of Two-Sided Space-Fractional Partial Differential Equations , 2015, Comput. Methods Appl. Math..

[20]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[21]  I. Turner,et al.  Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains , 2018, Applied Mathematical Modelling.

[22]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[23]  George Em Karniadakis,et al.  A tunable finite difference method for fractional differential equations with non-smooth solutions , 2017 .

[24]  Yubin Yan,et al.  A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation , 2019, J. Comput. Phys..

[25]  Zhiping Mao,et al.  A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities , 2017, SIAM J. Sci. Comput..

[26]  William Rundell,et al.  Variational formulation of problems involving fractional order differential operators , 2013, Math. Comput..

[27]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[28]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[29]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[30]  Bangti Jin,et al.  Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation , 2014, SIAM J. Numer. Anal..

[31]  Yubin Yan,et al.  Numerical analysis of a two-parameter fractional telegraph equation , 2013, J. Comput. Appl. Math..

[32]  K. Burrage,et al.  Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .

[33]  Fawang Liu,et al.  Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation , 2016 .

[34]  Wanrong Cao,et al.  An Improved Algorithm Based on Finite Difference Schemes for Fractional Boundary Value Problems with Nonsmooth Solution , 2017, J. Sci. Comput..

[35]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[36]  Yubin Yan,et al.  Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations , 2017 .

[37]  J. Pasciak,et al.  ERROR ANALYSIS OF FINITE ELEMENT METHODS FOR SPACE-FRACTIONAL PARABOLIC EQUATIONS , 2013, 1310.0066.

[38]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[39]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[40]  Fawang Liu,et al.  Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations , 2016, Appl. Math. Lett..

[41]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[42]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[43]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[44]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[45]  Fawang Liu,et al.  A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain , 2017 .