Fluidization of nanopowders: a review

Nanoparticles (NPs) are applied in a wide range of processes, and their use continues to increase. Fluidization is one of the best techniques available to disperse and process NPs. NPs cannot be fluidized individually; they fluidize as very porous agglomerates. The objective of this article is to review the developments in nanopowder fluidization. Often, it is needed to apply an assistance method, such as vibration or microjets, to obtain proper fluidization. These methods can greatly improve the fluidization characteristics, strongly increase the bed expansion, and lead to a better mixing of the bed material. Several approaches have been applied to model the behavior of fluidized nanopowders. The average size of fluidized NP agglomerates can be estimated using a force balance or by a modified Richardson and Zaki equation. Some first attempts have been made to apply computational fluid dynamics. Fluidization can also be used to provide individual NPs with a thin coating of another material and to mix two different species of nanopowder. The application of nanopowder fluidization in practice is still limited, but a wide range of potential applications is foreseen.

[1]  Jingsi Yang,et al.  Behavior of mixtures of nano-particles in magnetically assisted fluidized bed , 2008 .

[2]  J. Valverde,et al.  Electromechanics of fluidized beds of nanoparticles. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Jamal Chaouki,et al.  Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels , 1985 .

[4]  Roberto S. Murphy-Arteaga,et al.  n型非晶質SiGe:H/p型結晶質Siヘテロ接合ダイオードの伝導機構に及ぼすa‐SiGe:H厚の影響 , 2005 .

[5]  L. G. Gibilaro,et al.  Fluid dynamic stability of fluidised suspensions: the particle bed model , 1987 .

[6]  Peng Li,et al.  Nanocoating hybrid polymer films on large quantities of cohesive nanoparticles by molecular layer deposition , 2009 .

[7]  Qun Yu Gas fluidization of nanoparticles , 2005 .

[8]  Alan W. Weimer,et al.  Aggregation behavior of nanoparticles in fluidized beds , 2005 .

[9]  Joachim Werther,et al.  Liquid spray vs. gaseous precursor injection — Its influence on the performance of particle coating by CVD in the fluidized bed , 2006 .

[10]  Tao Zhou,et al.  Estimation of agglomerate size for cohesive particles during fluidization , 1999 .

[11]  Gilles Flamant,et al.  Plasma-enhanced chemical vapor deposition of nitrides on fluidized particles , 2001 .

[12]  Rainer Reimert,et al.  Experiments and modeling on the deacidification of agglomerates of nanoparticles in a fluidized bed , 2008 .

[13]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[14]  Zimin Nie,et al.  MgAl2O4 Spinel-Stabilized Calcium Oxide Absorbents with Improved Durability for High-Temperature CO2 Capture , 2010 .

[15]  A. Spillmann,et al.  Flowability modification of fine powders by plasma enhanced chemical vapor deposition , 2008 .

[16]  F. Pontiga,et al.  Improving the gas-solids contact efficiency in a fluidized bed of CO2 adsorbent fine particles. , 2011, Physical chemistry chemical physics : PCCP.

[17]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[18]  Dimitri Gidaspow,et al.  Fluidization of Nano-size Particles , 2002 .

[19]  G. Lowry,et al.  Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. , 2009, Nature nanotechnology.

[20]  Hans-Jürgen Butt,et al.  Surface and Interfacial Forces , 2010 .

[21]  P. Mills,et al.  Experimental study on the dynamics of gas-fluidized beds. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Jose Manuel Valverde,et al.  Electrofluidization of Silica Nanoparticle Agglomerates , 2012 .

[23]  A Castellanos,et al.  Physics of compaction of fine cohesive particles. , 2005, Physical review letters.

[24]  Chao Zhu,et al.  Gas fluidization characteristics of nanoparticle agglomerates , 2005 .

[25]  Jose Manuel Valverde,et al.  The settling of fine cohesive powders , 2001 .

[26]  Wei Zhang,et al.  Fluidisation behaviour of silica nanoparticles under horizontal vibration , 2010 .

[27]  Qingjie Guo,et al.  Sound-assisted fluidization of SiO2 nanoparticles with different surface properties , 2007 .

[28]  Soon Hwa Jung,et al.  Surface Modification of Fine Powders by Atmospheric Pressure Plasma in a Circulating Fluidized Bed Reactor , 2004 .

[29]  Andrew T. Harris,et al.  On the vibration assisted fluidisation of silica nanoparticles , 2008 .

[30]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[31]  Fei Wei,et al.  Solids mixing behavior in a nano-agglomerate fluidized bed , 2008 .

[32]  Markus Linsenbühler,et al.  A powder on the move: Coating of powder-coating particles with nanoparticle spacers by means of an electrostatic mixing process in liquid nitrogen , 2002 .

[33]  G. F. Round,et al.  Behaviour of beds of dense particles in a horizontally oscillating liquid , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  R. Chirone,et al.  Aeration and mixing behaviours of nano-sized powders under sound vibration , 2010 .

[35]  J. Ruud van Ommen,et al.  Fluorocarbon Coatings Deposited on Micron-Sized Particles by Atmospheric PECVD , 2012 .

[36]  Arnaud Fernandez,et al.  TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation , 2000 .

[37]  Rajesh N. Dave,et al.  Nanofluidization as affected by vibration and electrostatic fields , 2008 .

[38]  T. Witten,et al.  Mechanical stability of tenuous objects , 1984 .

[39]  Gerhard Kasper,et al.  Interparticle forces in silica nanoparticle agglomerates , 2010 .

[40]  G. Somorjai,et al.  Nanoscale advances in catalysis and energy applications. , 2010, Nano letters.

[41]  Jose Manuel Valverde,et al.  Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates , 2008 .

[42]  Jingsi Yang,et al.  Fluidization behavior of nano-particles by adding coarse particles , 2009 .

[43]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[44]  H. Nirschl,et al.  Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion , 2008 .

[45]  Yulong Ding,et al.  Numerical Simulations of Flow Behaviour of Agglomerates of Nano-Size Particles in Bubbling and Spouted Beds with an Agglomerate-Based Approach , 2007 .

[46]  Rajesh N. Dave,et al.  Dry particle coating for improving the flowability of cohesive powders , 2005 .

[47]  G. Bahar Basim,et al.  Fundamentals of Slurry Design for CMP of Metal and Dielectric Materials , 2002 .

[48]  G. Batchelor,et al.  Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results , 1982, Journal of Fluid Mechanics.

[49]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[50]  Richard M. Laine,et al.  One-step synthesis of core-shell (Ce0.7Zr0.3O2)(x)(Al2O3)(1-x) [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP). , 2009, Journal of the American Chemical Society.

[51]  Martin Rhodes,et al.  Nanoparticle fluidization and Geldart's classification , 2007 .

[52]  Rajesh N. Dave,et al.  Evaluation of assisting methods on fluidization of hydrophilic nanoagglomerates by monitoring moisture in the gas phase , 2007 .

[53]  J. Valverde,et al.  Effect of vibration on the stability of a gas-fluidized bed of fine powder. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Yan Li,et al.  Fluidization Characteristics of SiO2 Nanoparticles in an Acoustic Fluidized , 2006 .

[55]  T. Witten,et al.  Long-range correlations in smoke-particle aggregates , 1979 .

[56]  Tomoaki Ikegami,et al.  Prediction of Agglomerate Size for Fine Particles in a Vibro-fluidized Bed , 2003 .

[57]  Manfred Voll,et al.  Carbon, 6. Carbon Black , 2010 .

[58]  Wei Fei,et al.  Fluidization and agglomerate structure of SiO2 nanoparticles , 2002 .

[59]  Sotiris E. Pratsinis,et al.  Nanostructured Ca-based sorbents with high CO2 uptake efficiency , 2009 .

[60]  Alvin W. Nienow,et al.  Fluidisation of fine and very dense hardmetal powders , 1990 .

[61]  Martin Rhodes,et al.  Fluidization Characteristics of Nanoparticle Agglomerates , 2006 .

[62]  Alan W. Weimer,et al.  Nanocoating Individual Silica Nanoparticles by Atomic Layer Deposition in a Fluidized Bed Reactor , 2005 .

[63]  Masayuki Horio,et al.  Prediction of agglomerate sizes in bubbling fluidized beds of group C powders , 1998 .

[64]  Naoko Ellis,et al.  Scalable gas-phase processes to create nanostructured particles , 2010 .

[65]  U. Tuzun,et al.  Nano particle fluidisation in model 2-D and 3-D beds using high speed X-ray imaging and microtomography , 2007 .

[66]  Ayokunle Omosebi,et al.  Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets , 2010 .

[67]  R. Jackson,et al.  The nature of aggregative and particulate fluidization , 1964 .

[68]  Jonathan Seville,et al.  Interparticle forces in fluidisation: a review , 2000 .

[69]  J. Hanes,et al.  Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. , 2009, Advanced drug delivery reviews.

[70]  Jose Manuel Valverde,et al.  Effect of vibration on agglomerate particulate fluidization , 2006 .

[71]  J. Valverde,et al.  Nanofluidization electrostatics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Dimitri Gidaspow,et al.  Numerical simulation of flow behavior of agglomerates in gas–cohesive particles fluidized beds using agglomerates-based approach , 2010 .

[73]  J. Raper,et al.  On techniques for the measurement of the mass fractal dimension of aggregates. , 2002, Advances in colloid and interface science.

[74]  Chuan-Jian Zhong,et al.  Core–Shell Assembled Nanoparticles as Catalysts , 2001 .

[75]  John Nijenhuis,et al.  Atmospheric Pressure Process for Coating Particles Using Atomic Layer Deposition , 2009 .

[76]  Rajesh N. Dave,et al.  Fluidization of nanoagglomerates in a rotating fluidized bed , 2006 .

[77]  Hiroyuki Hatano,et al.  Modeling for size reduction of agglomerates in nanoparticle fluidization , 2004 .

[78]  Edward K. Levy,et al.  Combined effects of mechanical and acoustic vibrations on fluidization of cohesive powders , 2006 .

[79]  Jose Manuel Valverde,et al.  Types of gas fluidization of cohesive granular materials. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Dimitri Gidaspow,et al.  Effect of electric field on the hydrodynamics of fluidized nanoparticles , 2008 .

[81]  Hans-Jürgen Butt,et al.  Surface and Interfacial Forces: BUTT:SURFACE FORCES O-BK , 2010 .

[82]  Jose Manuel Valverde,et al.  Fluidization of nanoparticles : A modified Richardson-Zaki law , 2006 .

[83]  Jamal Chaouki,et al.  Encapsulation of nanoparticles by polymerization compounding in a gas/solid fluidized bed reactor , 2009 .

[84]  Rajesh N. Dave,et al.  Sound assisted fluidization of nanoparticle agglomerates , 2004 .

[85]  S. Friedlander,et al.  Nanoparticle Formation by Laser Ablation , 2002 .

[86]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[87]  K. Jain,et al.  Applications of nanobiotechnology in clinical diagnostics. , 2007, Clinical chemistry.

[88]  M. Radomski,et al.  Nanoparticles: pharmacological and toxicological significance , 2007, British journal of pharmacology.

[89]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[90]  Katsuki Kusakabe,et al.  FLUIDIZATION STATE OF ULTRAFINE POWDERS , 1988 .

[91]  Martin Rhodes,et al.  APPLICATION OF DISCRETE ELEMENT METHOD SIMULATION FOR STUDYING FLUIDIZATION OF NANOPARTICLE AGGLOMERATES , 2008 .

[92]  Sotiris E Pratsinis,et al.  In situ coating of flame-made TiO2 particles with nanothin SiO2 films. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[93]  Jamal Chaouki,et al.  An evaluation of the solid hold‐up distribution in a fluidized bed of nanoparticles using radioactive densitometry and fibre optics , 2008 .

[94]  Peng Li,et al.  Atomic layer deposition of TiO2 films on particles in a fluidized bed reactor , 2008 .

[95]  Antonio Castellanos,et al.  The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders , 2005 .

[96]  Julio Soria,et al.  Laser-based planar imaging of nano-particle fluidization: Part II—mechanistic analysis of nanoparticle aggregation , 2006 .

[97]  Berend van Wachem,et al.  Derivation, simulation and validation of a cohesive particle flow CFD model , 2008 .

[98]  Rajesh N. Dave,et al.  Enhanced fluidization of nanoparticles in an oscillating magnetic field , 2005 .

[99]  Wen-Ching Yang,et al.  Fluidization of Fine Cohesive Powders and Nanoparticles-A Review , 2005 .

[100]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[101]  Zimin Nie,et al.  Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO{sub 2} capture , 2009 .

[102]  Hideya Nakamura,et al.  Fundamental particle fluidization behavior and handling of nano-particles in a rotating fluidized bed , 2008 .

[103]  Robert Pfeffer,et al.  In Situ Measurements of Gas Fluidized Nanoagglomerates , 2010 .

[104]  Berend van Wachem,et al.  EXPERIMENTS AND MODELLING OF MICRO-JET ASSISTED FLUIDIZATION OF NANOPARTICLES , 2010 .

[105]  Rajesh N. Dave,et al.  Aerated vibrofluidization of silica nanoparticles , 2004 .

[106]  Jose Manuel Valverde,et al.  Fluidization, bubbling and jamming of nanoparticle agglomerates , 2007 .

[107]  Bruce D Hammock,et al.  Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard , 2007, Nanotechnology.

[108]  D. W. Schaefer,et al.  Polymers, Fractals, and Ceramic Materials , 1989, Science.

[109]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[110]  Julio Soria,et al.  Laser-based planar imaging of nano-particle fluidization: Part I—determination of aggregate size and shape , 2006 .

[111]  Aaron Peled,et al.  Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review , 1998 .

[112]  R. C. Ball,et al.  Universality in colloid aggregation , 1989, Nature.

[113]  D. Geldart Types of gas fluidization , 1973 .

[114]  Rajesh N. Dave,et al.  Fluidization of fine and ultrafine particles using nitrogen and neon as fluidizing gases , 2008 .

[115]  John D Sherwood,et al.  A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. , 2002, Journal of pharmaceutical sciences.

[116]  Rajesh N. Dave,et al.  Enhanced nanofluidization by alternating electric fields , 2009 .

[117]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[118]  Antonio Ramos,et al.  The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity , 1998 .

[119]  Alan W. Weimer,et al.  Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles , 2000 .

[120]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .